A neural network based algorithm for complex pattern classification problems

A. Martins, A. Neto, J. Melo
{"title":"A neural network based algorithm for complex pattern classification problems","authors":"A. Martins, A. Neto, J. Melo","doi":"10.21528/LNLM-VOL2-NO2-ART4","DOIUrl":null,"url":null,"abstract":"Abstract This work presents an application of neural networks in pattern classification. A new algorithm for automatic classification of data is presented. The algorithm makes use of a competitive neural network to aid the classification process. The algorithm gets a data set D and segments it into clusters. The only prior given information is a number of auxiliary centers and a threshold distance. The algorithm uses the Mahalanobis metrics to cluster the data and find itself the number of classes. Some tests were made in artificially generated data sets with complex distributions and compared to standard classification methods that use Euclidian distance as its metrics.","PeriodicalId":386768,"journal":{"name":"Learning and Nonlinear Models","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning and Nonlinear Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21528/LNLM-VOL2-NO2-ART4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract This work presents an application of neural networks in pattern classification. A new algorithm for automatic classification of data is presented. The algorithm makes use of a competitive neural network to aid the classification process. The algorithm gets a data set D and segments it into clusters. The only prior given information is a number of auxiliary centers and a threshold distance. The algorithm uses the Mahalanobis metrics to cluster the data and find itself the number of classes. Some tests were made in artificially generated data sets with complex distributions and compared to standard classification methods that use Euclidian distance as its metrics.
一种基于神经网络的复杂模式分类算法
摘要本文介绍了神经网络在模式分类中的应用。提出了一种新的数据自动分类算法。该算法利用竞争神经网络来辅助分类过程。该算法得到一个数据集D,并将其分成簇。唯一的先验信息是一些辅助中心和一个阈值距离。该算法使用Mahalanobis指标对数据进行聚类,并自行找到类的数量。在人工生成的具有复杂分布的数据集上进行了一些测试,并将其与使用欧几里得距离作为度量的标准分类方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信