A $345\mu \mathbf{W}$ 1 GHz Process and Temperature Invariant Constant Slope-and-Swing Ramp-based 7-bit Phase Interpolator for True-Time-Delay Spatial Signal Processors
Soumen Mohapatra, Chung-Ching Lin, M. Chahardori, Erfan Ghaderi, Md Aminul Hoque, Subhanshu Gupta, D. Heo
{"title":"A $345\\mu \\mathbf{W}$ 1 GHz Process and Temperature Invariant Constant Slope-and-Swing Ramp-based 7-bit Phase Interpolator for True-Time-Delay Spatial Signal Processors","authors":"Soumen Mohapatra, Chung-Ching Lin, M. Chahardori, Erfan Ghaderi, Md Aminul Hoque, Subhanshu Gupta, D. Heo","doi":"10.1109/RFIC54546.2022.9863133","DOIUrl":null,"url":null,"abstract":"In the baseband time delay (TD) elements used for delay compensation in discrete-time beamformers, phase interpolator (PI) plays a crucial role as the resolution of the PI defines the delay resolution of the TD. In this paper, we present a process and temperature invariant high-resolution and highly linear low-power PI. The proposed PI uses current integration which generates an adaptable constant slope-and-swing ramp signal to achieve low power. By switched-capacitor bias generation, the PI linearity is enhanced with 0.2 LSB DNL and 0.3 LSB INL, respectively. The 7-bit PI is realized in 65nm CMOS technology can generate the full range delay with a resolution of 8psec with the input of 1GHz. The PI consumes a power of $\\mathbf{345}\\mu \\mathbf{W}$ and and occupies an active area of 0.021mm2.","PeriodicalId":415294,"journal":{"name":"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC54546.2022.9863133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the baseband time delay (TD) elements used for delay compensation in discrete-time beamformers, phase interpolator (PI) plays a crucial role as the resolution of the PI defines the delay resolution of the TD. In this paper, we present a process and temperature invariant high-resolution and highly linear low-power PI. The proposed PI uses current integration which generates an adaptable constant slope-and-swing ramp signal to achieve low power. By switched-capacitor bias generation, the PI linearity is enhanced with 0.2 LSB DNL and 0.3 LSB INL, respectively. The 7-bit PI is realized in 65nm CMOS technology can generate the full range delay with a resolution of 8psec with the input of 1GHz. The PI consumes a power of $\mathbf{345}\mu \mathbf{W}$ and and occupies an active area of 0.021mm2.