Aplications Of Neural Networks In The Controller Design

F. Pourboghrat
{"title":"Aplications Of Neural Networks In The Controller Design","authors":"F. Pourboghrat","doi":"10.1109/ELECTR.1991.718263","DOIUrl":null,"url":null,"abstract":"In this paper, the applications of neural networks for the design of learning controllers are discussed. It is argued that the usual error back propagation (EBP) algorithm cannot be readily used for the training of neural controllers. Instead, in order to ensure the convergence of the training process and the stability of the closed-loop system, a stability approach must be taken to derive a learning algorithm. We use Liapunov's stability approach to develop a learning rule for neural network controllers that would guarantee the stability of the training process under mild conditions, These controllers do not require a priori information about the plant dynamics. The designed controller is then used for the control of robots.","PeriodicalId":339281,"journal":{"name":"Electro International, 1991","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electro International, 1991","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELECTR.1991.718263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, the applications of neural networks for the design of learning controllers are discussed. It is argued that the usual error back propagation (EBP) algorithm cannot be readily used for the training of neural controllers. Instead, in order to ensure the convergence of the training process and the stability of the closed-loop system, a stability approach must be taken to derive a learning algorithm. We use Liapunov's stability approach to develop a learning rule for neural network controllers that would guarantee the stability of the training process under mild conditions, These controllers do not require a priori information about the plant dynamics. The designed controller is then used for the control of robots.
神经网络在控制器设计中的应用
本文讨论了神经网络在学习控制器设计中的应用。本文认为,通常的误差反向传播(EBP)算法不能很好地用于神经控制器的训练。相反,为了保证训练过程的收敛性和闭环系统的稳定性,必须采用稳定性方法推导学习算法。我们使用Liapunov的稳定性方法来开发神经网络控制器的学习规则,以保证在温和条件下训练过程的稳定性,这些控制器不需要关于植物动态的先验信息。然后将设计好的控制器用于机器人的控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信