A comparative analysis of various classification trees

Y. Sheela, S. Krishnaveni
{"title":"A comparative analysis of various classification trees","authors":"Y. Sheela, S. Krishnaveni","doi":"10.1109/ICCPCT.2017.8074403","DOIUrl":null,"url":null,"abstract":"Data mining deals with large voluminous data. Classification of data is an important task in data mining process that extracts models for describing classes and predicts target class for data instances. Today several standard classifiers are available. In this paper, divergent datasets from University of California, Irvine(UCI) are classified using Weka Explorer with different classification trees like Decision Stump, Hoeffding tree, J48, LMT, Random forest and REP tree. Then classification is also done by importing Weka Library for classification trees to NetbeansIDE. Finally results of both methodologies are compared using the performance measures like Accuracy and execution time.","PeriodicalId":208028,"journal":{"name":"2017 International Conference on Circuit ,Power and Computing Technologies (ICCPCT)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Circuit ,Power and Computing Technologies (ICCPCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPCT.2017.8074403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Data mining deals with large voluminous data. Classification of data is an important task in data mining process that extracts models for describing classes and predicts target class for data instances. Today several standard classifiers are available. In this paper, divergent datasets from University of California, Irvine(UCI) are classified using Weka Explorer with different classification trees like Decision Stump, Hoeffding tree, J48, LMT, Random forest and REP tree. Then classification is also done by importing Weka Library for classification trees to NetbeansIDE. Finally results of both methodologies are compared using the performance measures like Accuracy and execution time.
各种分类树的比较分析
数据挖掘处理大量的数据。数据分类是数据挖掘过程中的一项重要任务,它提取用于描述类的模型,并为数据实例预测目标类。现在有几个标准分类器可用。本文使用Weka Explorer对来自加州大学欧文分校(University of California, Irvine, UCI)的不同数据集进行分类,使用Decision Stump、Hoeffding tree、J48、LMT、Random forest和REP tree等不同的分类树。然后,还可以通过将用于分类树的Weka Library导入NetbeansIDE来完成分类。最后,使用准确性和执行时间等性能度量对两种方法的结果进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信