Two-step Content-based Retrieval for Pulmonary Nodule Diagnosis

Chune Li, Jingang Ma, Guohui Wei
{"title":"Two-step Content-based Retrieval for Pulmonary Nodule Diagnosis","authors":"Chune Li, Jingang Ma, Guohui Wei","doi":"10.1145/3429889.3429934","DOIUrl":null,"url":null,"abstract":"Similarity measurement of pulmonary nodules can be useful in content-based retrieval for pulmonary nodule diagnosis on computed tomography (CT). Unlike previous retrieval schemes, which concentrate on the feature extracting, we focus on the similarity measurement of pulmonary nodules. Similar to our previous studies, in this study, the pulmonary nodule dataset is from the LIDC-IDRI lung CT images, which includes 746 pulmonary nodules, 375 malignant nodules and 371 benign nodules. Each nodule is represented by a vector of 26 texture features. Two-step similarity measurement is proposed to construct a content-based image retrieval (CBIR) scheme to discriminant benign and malignant nodules. The similarities of pulmonary nodules are defined as semantic relevance and visual similarity. In the first step, semantic relevance is used to screen the nodules, which are semantic relevance to the query nodule. For the second step, visual similarity is applied to calculate the nodules, which look like the query nodules. Two Mahalanobis distances are learned to preserve semantic relevance and visual similarity of lung nodules, respectively. A retrieval scheme applies the learned Mahalanobis distances to calculate the similar nodules. Classification accuracy is used to evaluate the scheme performance, the area under the ROC curve (AUC) can reach 0.956±0.005.","PeriodicalId":315899,"journal":{"name":"Proceedings of the 1st International Symposium on Artificial Intelligence in Medical Sciences","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st International Symposium on Artificial Intelligence in Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3429889.3429934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Similarity measurement of pulmonary nodules can be useful in content-based retrieval for pulmonary nodule diagnosis on computed tomography (CT). Unlike previous retrieval schemes, which concentrate on the feature extracting, we focus on the similarity measurement of pulmonary nodules. Similar to our previous studies, in this study, the pulmonary nodule dataset is from the LIDC-IDRI lung CT images, which includes 746 pulmonary nodules, 375 malignant nodules and 371 benign nodules. Each nodule is represented by a vector of 26 texture features. Two-step similarity measurement is proposed to construct a content-based image retrieval (CBIR) scheme to discriminant benign and malignant nodules. The similarities of pulmonary nodules are defined as semantic relevance and visual similarity. In the first step, semantic relevance is used to screen the nodules, which are semantic relevance to the query nodule. For the second step, visual similarity is applied to calculate the nodules, which look like the query nodules. Two Mahalanobis distances are learned to preserve semantic relevance and visual similarity of lung nodules, respectively. A retrieval scheme applies the learned Mahalanobis distances to calculate the similar nodules. Classification accuracy is used to evaluate the scheme performance, the area under the ROC curve (AUC) can reach 0.956±0.005.
基于两步内容的肺结节诊断检索
肺结节的相似度测量在基于内容的计算机断层扫描(CT)肺结节诊断检索中是有用的。不同于以往的检索方法,我们的重点是肺结节的相似度测量。与我们之前的研究类似,在本研究中,肺结节数据集来自LIDC-IDRI肺部CT图像,包括746个肺结节,375个恶性结节和371个良性结节。每个节点由26个纹理特征组成的向量表示。提出了两步相似性度量方法,构建了基于内容的图像检索(CBIR)方案来判别良恶性结节。将肺结节的相似性定义为语义相关性和视觉相似性。在第一步中,使用语义相关性来筛选结节,这些结节与查询结节具有语义相关性。对于第二步,应用视觉相似性来计算结节,这些结节看起来像查询结节。学习两种马氏距离分别保持肺结节的语义相关性和视觉相似性。一种检索方案利用学习到的马氏距离来计算相似结节。以分类精度评价方案性能,ROC曲线下面积(AUC)可达0.956±0.005。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信