Boosting toponym interlinking by paying attention to both machine and deep learning

Konstantinos Alexis, Vassilis Kaffes, G. Giannopoulos
{"title":"Boosting toponym interlinking by paying attention to both machine and deep learning","authors":"Konstantinos Alexis, Vassilis Kaffes, G. Giannopoulos","doi":"10.1145/3403896.3403970","DOIUrl":null,"url":null,"abstract":"Toponym interlinking is the problem of identifying same spatio-textual entities within two or more different data sources, based exclusively on their names. It comprises a significant task in geospatial data management and integration with application in fields such as geomarketing, cadastration, navigation, etc. Previous works have assessed the effectiveness of unsupervised string similarity functions, while more recent ones have deployed similarity-based Machine Learning techniques and language model-based Deep Learning techniques, achieving significantly higher interlinking accuracy. In this paper, we demonstrate the suitability of Attention-based neural networks on the problem, as well as the fact that all different approaches provide merit to the problem, proposing a hybrid scheme that achieves the highest accuracy reported on toponym interlinking on the widely used Geonames dataset.","PeriodicalId":433637,"journal":{"name":"Proceedings of the Sixth International ACM SIGMOD Workshop on Managing and Mining Enriched Geo-Spatial Data","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth International ACM SIGMOD Workshop on Managing and Mining Enriched Geo-Spatial Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3403896.3403970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Toponym interlinking is the problem of identifying same spatio-textual entities within two or more different data sources, based exclusively on their names. It comprises a significant task in geospatial data management and integration with application in fields such as geomarketing, cadastration, navigation, etc. Previous works have assessed the effectiveness of unsupervised string similarity functions, while more recent ones have deployed similarity-based Machine Learning techniques and language model-based Deep Learning techniques, achieving significantly higher interlinking accuracy. In this paper, we demonstrate the suitability of Attention-based neural networks on the problem, as well as the fact that all different approaches provide merit to the problem, proposing a hybrid scheme that achieves the highest accuracy reported on toponym interlinking on the widely used Geonames dataset.
通过关注机器学习和深度学习来促进地名的相互关联
地名互连是指在两个或多个不同数据源中仅根据其名称识别相同的空间文本实体的问题。它包括地理空间数据管理和与地理营销、地籍、导航等领域的应用集成的重要任务。以前的工作已经评估了无监督字符串相似函数的有效性,而最近的工作已经部署了基于相似度的机器学习技术和基于语言模型的深度学习技术,实现了更高的互连精度。在本文中,我们展示了基于注意力的神经网络在该问题上的适用性,以及所有不同方法都为该问题提供优点的事实,并提出了一种混合方案,该方案在广泛使用的地名数据集上实现了最高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信