Performance Comparison Between New Level Set Method and Previous Methods for Volume Images Segmentation

Myungeun Lee, Wanhyun Cho, Sun-Worl Kim, Yanjuan Chen, Soohyung Kim
{"title":"Performance Comparison Between New Level Set Method and Previous Methods for Volume Images Segmentation","authors":"Myungeun Lee, Wanhyun Cho, Sun-Worl Kim, Yanjuan Chen, Soohyung Kim","doi":"10.3745/KIPSTB.2011.18B.3.131","DOIUrl":null,"url":null,"abstract":"In this paper, we compare our proposed method with previous methods for the volumetric image segmentation using level set. In order to obtain an exact segmentation, the region and boundary information of image object are used in our proposed speed function. The boundary information is defined by the gradient vector flow obtained from the gradient images and the region information is defined by Gaussian distribution information of pixel intensity in a region-of-interest for image segmentation. Also the regular term is used to remove the noise around surface. We show various experimental results of real medical volume images to verify the superiority of proposed method.","PeriodicalId":122700,"journal":{"name":"The Kips Transactions:partb","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Kips Transactions:partb","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/KIPSTB.2011.18B.3.131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we compare our proposed method with previous methods for the volumetric image segmentation using level set. In order to obtain an exact segmentation, the region and boundary information of image object are used in our proposed speed function. The boundary information is defined by the gradient vector flow obtained from the gradient images and the region information is defined by Gaussian distribution information of pixel intensity in a region-of-interest for image segmentation. Also the regular term is used to remove the noise around surface. We show various experimental results of real medical volume images to verify the superiority of proposed method.
新水平集方法与以往体图像分割方法的性能比较
在本文中,我们将所提出的方法与先前的基于水平集的体积图像分割方法进行了比较。为了获得精确的分割,我们提出的速度函数中使用了图像对象的区域和边界信息。边界信息由梯度图像得到的梯度向量流定义,区域信息由感兴趣区域像素强度的高斯分布信息定义,用于图像分割。同时利用正则项去除表面周围的噪声。我们给出了各种真实医学体图像的实验结果,以验证所提出方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信