{"title":"High performance cache replacement using re-reference interval prediction (RRIP)","authors":"A. Jaleel, K. B. Theobald, S. Steely, J. Emer","doi":"10.1145/1815961.1815971","DOIUrl":null,"url":null,"abstract":"Practical cache replacement policies attempt to emulate optimal replacement by predicting the re-reference interval of a cache block. The commonly used LRU replacement policy always predicts a near-immediate re-reference interval on cache hits and misses. Applications that exhibit a distant re-reference interval perform badly under LRU. Such applications usually have a working-set larger than the cache or have frequent bursts of references to non-temporal data (called scans). To improve the performance of such workloads, this paper proposes cache replacement using Re-reference Interval Prediction (RRIP). We propose Static RRIP (SRRIP) that is scan-resistant and Dynamic RRIP (DRRIP) that is both scan-resistant and thrash-resistant. Both RRIP policies require only 2-bits per cache block and easily integrate into existing LRU approximations found in modern processors. Our evaluations using PC games, multimedia, server and SPEC CPU2006 workloads on a single-core processor with a 2MB last-level cache (LLC) show that both SRRIP and DRRIP outperform LRU replacement on the throughput metric by an average of 4% and 10% respectively. Our evaluations with over 1000 multi-programmed workloads on a 4-core CMP with an 8MB shared LLC show that SRRIP and DRRIP outperform LRU replacement on the throughput metric by an average of 7% and 9% respectively. We also show that RRIP outperforms LFU, the state-of the art scan-resistant replacement algorithm to-date. For the cache configurations under study, RRIP requires 2X less hardware than LRU and 2.5X less hardware than LFU.","PeriodicalId":132033,"journal":{"name":"Proceedings of the 37th annual international symposium on Computer architecture","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"708","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th annual international symposium on Computer architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1815961.1815971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 708
Abstract
Practical cache replacement policies attempt to emulate optimal replacement by predicting the re-reference interval of a cache block. The commonly used LRU replacement policy always predicts a near-immediate re-reference interval on cache hits and misses. Applications that exhibit a distant re-reference interval perform badly under LRU. Such applications usually have a working-set larger than the cache or have frequent bursts of references to non-temporal data (called scans). To improve the performance of such workloads, this paper proposes cache replacement using Re-reference Interval Prediction (RRIP). We propose Static RRIP (SRRIP) that is scan-resistant and Dynamic RRIP (DRRIP) that is both scan-resistant and thrash-resistant. Both RRIP policies require only 2-bits per cache block and easily integrate into existing LRU approximations found in modern processors. Our evaluations using PC games, multimedia, server and SPEC CPU2006 workloads on a single-core processor with a 2MB last-level cache (LLC) show that both SRRIP and DRRIP outperform LRU replacement on the throughput metric by an average of 4% and 10% respectively. Our evaluations with over 1000 multi-programmed workloads on a 4-core CMP with an 8MB shared LLC show that SRRIP and DRRIP outperform LRU replacement on the throughput metric by an average of 7% and 9% respectively. We also show that RRIP outperforms LFU, the state-of the art scan-resistant replacement algorithm to-date. For the cache configurations under study, RRIP requires 2X less hardware than LRU and 2.5X less hardware than LFU.