Development of a Permeability Reduction Model Using Deep Learning for CO2 Hydrate Storage

Alan Junji Yamaguchi, Toru Sato, T. Tobase, Xinran Wei, Lin Huang, Jia Zhang, J. Bian, Tie-Yan Liu
{"title":"Development of a Permeability Reduction Model Using Deep Learning for CO2 Hydrate Storage","authors":"Alan Junji Yamaguchi, Toru Sato, T. Tobase, Xinran Wei, Lin Huang, Jia Zhang, J. Bian, Tie-Yan Liu","doi":"10.1115/omae2022-78523","DOIUrl":null,"url":null,"abstract":"\n Global warming is an important environmental issue, and carbon capture and storage (CCS) is a major technology to reduce the emission of greenhouse gases. Captured carbon dioxide (CO2) can be stored in aquifers onshore or offshore seabed regions. Nevertheless, a small risk exists in which CO2 may leak due to natural phenomena opening cracks in the caprock. The natural formation of CO2 hydrates may create a new impermeable layer managing to block a possible leakage. It is of utmost necessity to understand and evaluate the permeability change due to the hydrate formation. Numerical simulation on different spatial scales has been essential for this purpose. The main objective of this study is to create a new framework for permeability reduction due to CO2 hydrate formation. Using machine learning, a multiscale approach links a large reservoir scale hydrate formation model with a microscale model. Detailed information from the hydrate shape can be obtained from the microscopic range to predict the new permeability reduction coefficient. Initial results have shown that this approach can obtain the permeability change due to CO2 hydrate formation with reasonable accuracy.","PeriodicalId":363084,"journal":{"name":"Volume 10: Petroleum Technology","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10: Petroleum Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2022-78523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Global warming is an important environmental issue, and carbon capture and storage (CCS) is a major technology to reduce the emission of greenhouse gases. Captured carbon dioxide (CO2) can be stored in aquifers onshore or offshore seabed regions. Nevertheless, a small risk exists in which CO2 may leak due to natural phenomena opening cracks in the caprock. The natural formation of CO2 hydrates may create a new impermeable layer managing to block a possible leakage. It is of utmost necessity to understand and evaluate the permeability change due to the hydrate formation. Numerical simulation on different spatial scales has been essential for this purpose. The main objective of this study is to create a new framework for permeability reduction due to CO2 hydrate formation. Using machine learning, a multiscale approach links a large reservoir scale hydrate formation model with a microscale model. Detailed information from the hydrate shape can be obtained from the microscopic range to predict the new permeability reduction coefficient. Initial results have shown that this approach can obtain the permeability change due to CO2 hydrate formation with reasonable accuracy.
基于深度学习的CO2水合物储层渗透率降低模型的开发
全球变暖是一个重要的环境问题,而碳捕集与封存(CCS)是减少温室气体排放的主要技术。捕获的二氧化碳(CO2)可以储存在陆上或近海海底区域的含水层中。然而,由于自然现象在盖层上打开裂缝,存在着二氧化碳泄漏的小风险。自然形成的二氧化碳水合物可能会形成一个新的不透水层,以阻止可能的泄漏。认识和评价水合物形成引起的渗透率变化是十分必要的。为此,不同空间尺度上的数值模拟是必不可少的。本研究的主要目的是为二氧化碳水合物形成导致的渗透率降低建立一个新的框架。利用机器学习,多尺度方法将大型油藏尺度水合物形成模型与微观尺度模型联系起来。水合物形态可以在微观范围内获得详细的信息,用于预测新的渗透折减系数。初步结果表明,该方法可以较准确地获得CO2水合物形成引起的渗透率变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信