Ryan E. Smith, Derek T. Anderson, Alina Zare, J. Ball, B. Smock, J. Fairley, S. Howington
{"title":"Genetic programming based Choquet integral for multi-source fusion","authors":"Ryan E. Smith, Derek T. Anderson, Alina Zare, J. Ball, B. Smock, J. Fairley, S. Howington","doi":"10.1109/FUZZ-IEEE.2017.8015481","DOIUrl":null,"url":null,"abstract":"While the Choquet integral (Chi) is a powerful parametric nonlinear aggregation function, it has limited scope and is not a universal function generator. Herein, we focus on a class of problems that are outside the scope of a single Chi. Namely, we are interested in tasks where different subsets of inputs require different Chls. Herein, a genetic program (GF) is used to extend the Chi, referred to as GpChI hereafter, specifically in terms of compositions of Chls and/or arithmetic combinations of Chls. An algorithm is put forth to leam the different GP Chls via genetic algorithm (GA) optimization. Synthetic experiments demonstrate GpChI in a controlled fashion, i.e., we know the answer and can compare what is learned to the truth. Real-world experiments are also provided for the mult-sensor fusion of electromagnetic induction (EMI) and ground penetrating radar (GPR) for explosive hazard detection. Our mutli-sensor fusion experiments show that there is utility in changing aggregation strategy per different subsets of inputs (sensors or algorithms) and fusing those results.","PeriodicalId":408343,"journal":{"name":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ-IEEE.2017.8015481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
While the Choquet integral (Chi) is a powerful parametric nonlinear aggregation function, it has limited scope and is not a universal function generator. Herein, we focus on a class of problems that are outside the scope of a single Chi. Namely, we are interested in tasks where different subsets of inputs require different Chls. Herein, a genetic program (GF) is used to extend the Chi, referred to as GpChI hereafter, specifically in terms of compositions of Chls and/or arithmetic combinations of Chls. An algorithm is put forth to leam the different GP Chls via genetic algorithm (GA) optimization. Synthetic experiments demonstrate GpChI in a controlled fashion, i.e., we know the answer and can compare what is learned to the truth. Real-world experiments are also provided for the mult-sensor fusion of electromagnetic induction (EMI) and ground penetrating radar (GPR) for explosive hazard detection. Our mutli-sensor fusion experiments show that there is utility in changing aggregation strategy per different subsets of inputs (sensors or algorithms) and fusing those results.