Aleksandar Prokopec, Dmitry Petrashko, Martin Odersky
{"title":"Efficient Lock-Free Work-Stealing Iterators for Data-Parallel Collections","authors":"Aleksandar Prokopec, Dmitry Petrashko, Martin Odersky","doi":"10.1109/PDP.2015.65","DOIUrl":null,"url":null,"abstract":"High-level data-structures are an important foundation for most applications. With the rise of multicores, there is a trend of supporting data-parallel collection operations in general purpose programming languages. However, these operations often incur high-level abstraction and scheduling penalties. We present a generic data-parallel collections design based on work-stealing for shared-memory architectures that overcomes abstraction penalties through call site specialization of data-parallel operation instances. Moreover, we introduce work-stealing iterators that allow more fine-grained and efficient work-stealing. By eliminating abstraction penalties and making work-stealing data-structure-aware we achieve several dozen times better performance compared to existing JVM-based approaches.","PeriodicalId":285111,"journal":{"name":"2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP.2015.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
High-level data-structures are an important foundation for most applications. With the rise of multicores, there is a trend of supporting data-parallel collection operations in general purpose programming languages. However, these operations often incur high-level abstraction and scheduling penalties. We present a generic data-parallel collections design based on work-stealing for shared-memory architectures that overcomes abstraction penalties through call site specialization of data-parallel operation instances. Moreover, we introduce work-stealing iterators that allow more fine-grained and efficient work-stealing. By eliminating abstraction penalties and making work-stealing data-structure-aware we achieve several dozen times better performance compared to existing JVM-based approaches.