Poster: Speeding Up Network Intrusion Detection

João Romeiras Amado, S. Signorello, M. Correia, Fernando M. V. Ramos
{"title":"Poster: Speeding Up Network Intrusion Detection","authors":"João Romeiras Amado, S. Signorello, M. Correia, Fernando M. V. Ramos","doi":"10.1109/ICNP49622.2020.9259349","DOIUrl":null,"url":null,"abstract":"Modern network data planes have enabled new measurement approaches, including efficient sketch-based techniques with provable trade-offs between memory and accuracy, directly in the data plane, at line rate. We thus ask the question: can one leverage this richer measurement plane to improve network intrusion detection? Our answer is SPID, a push-based, feature-rich network monitoring approach to assist learning-based attack detection. SPID switches run a diverse set of measurement primitives and proactively push measurements to the monitoring system when relevant changes occur. Network measurements are then fed as input features to a classifier based on unsupervised learning to detect ongoing attacks, as they occur. In consequence, SPID aims to reduce attack detection time, when comparing to existing solutions present in large scale networks.","PeriodicalId":233856,"journal":{"name":"2020 IEEE 28th International Conference on Network Protocols (ICNP)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 28th International Conference on Network Protocols (ICNP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNP49622.2020.9259349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modern network data planes have enabled new measurement approaches, including efficient sketch-based techniques with provable trade-offs between memory and accuracy, directly in the data plane, at line rate. We thus ask the question: can one leverage this richer measurement plane to improve network intrusion detection? Our answer is SPID, a push-based, feature-rich network monitoring approach to assist learning-based attack detection. SPID switches run a diverse set of measurement primitives and proactively push measurements to the monitoring system when relevant changes occur. Network measurements are then fed as input features to a classifier based on unsupervised learning to detect ongoing attacks, as they occur. In consequence, SPID aims to reduce attack detection time, when comparing to existing solutions present in large scale networks.
海报:加速网络入侵检测
现代网络数据平面已经实现了新的测量方法,包括高效的基于草图的技术,可以在内存和精度之间进行可验证的权衡,直接在数据平面上以线速率进行。因此,我们提出了一个问题:是否可以利用这个更丰富的测量平面来改进网络入侵检测?我们的答案是SPID,这是一种基于推送的、功能丰富的网络监控方法,用于辅助基于学习的攻击检测。SPID交换机运行一组不同的测量原语,并在发生相关更改时主动将测量结果推送到监视系统。然后将网络测量作为输入特征馈送到基于无监督学习的分类器,以检测正在发生的攻击。因此,与大规模网络中的现有解决方案相比,SPID旨在减少攻击检测时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信