Frequency domain hammerstein model of glucose-insulin process in IDDM patient

A. Bhattacharjee, A. Sutradhar
{"title":"Frequency domain hammerstein model of glucose-insulin process in IDDM patient","authors":"A. Bhattacharjee, A. Sutradhar","doi":"10.1109/ICSMB.2010.5735359","DOIUrl":null,"url":null,"abstract":"This paper deals with a frequency domain kernel estimation problem for modeling a nonlinear dynamic system of multivariable glucose-insulin process in an insulin dependent diabetes mellitus (IDDM) patient. For such a process with uncertainties and parameter variations, the nonparametric models are most useful for closed loop model predictive control. The present work proposes a frequency domain kernel estimation of a Hammerstein model using the harmonic excitation input by taking FFT on the input data sequence from the glucose-insulin process of IDDM patient model. For the multivariable system, the first block is a two-input single output nonlinear block followed by a SISO linear filter. The adaptive recursive least square (ARLS) algorithm is used to solve up to second order kernels of Volterra equations with extended input vector consisting of self and cross components. Twice the length of the extended input vector for the MISO system was considered for finding the kernels and the output in frequency domain. The input-output data taken from the first principle model of nonlinear process, have been used to identify the system with a short filter memory length of M=2 and the validation results have shown good fit both in frequency and time domain responses.","PeriodicalId":297136,"journal":{"name":"2010 International Conference on Systems in Medicine and Biology","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Systems in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSMB.2010.5735359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper deals with a frequency domain kernel estimation problem for modeling a nonlinear dynamic system of multivariable glucose-insulin process in an insulin dependent diabetes mellitus (IDDM) patient. For such a process with uncertainties and parameter variations, the nonparametric models are most useful for closed loop model predictive control. The present work proposes a frequency domain kernel estimation of a Hammerstein model using the harmonic excitation input by taking FFT on the input data sequence from the glucose-insulin process of IDDM patient model. For the multivariable system, the first block is a two-input single output nonlinear block followed by a SISO linear filter. The adaptive recursive least square (ARLS) algorithm is used to solve up to second order kernels of Volterra equations with extended input vector consisting of self and cross components. Twice the length of the extended input vector for the MISO system was considered for finding the kernels and the output in frequency domain. The input-output data taken from the first principle model of nonlinear process, have been used to identify the system with a short filter memory length of M=2 and the validation results have shown good fit both in frequency and time domain responses.
IDDM患者葡萄糖-胰岛素过程的频域hammerstein模型
本文研究了胰岛素依赖型糖尿病(IDDM)患者多变量葡萄糖-胰岛素过程非线性动态系统的频域核估计问题。对于这类具有不确定性和参数变化的过程,非参数模型最适合于闭环模型预测控制。本文通过对IDDM患者模型中葡萄糖-胰岛素过程的输入数据序列进行FFT,提出了利用谐波激励输入的Hammerstein模型的频域核估计。对于多变量系统,第一个块是一个双输入单输出非线性块,然后是一个SISO线性滤波器。采用自适应递归最小二乘(ARLS)算法求解由自分量和交叉分量组成的扩展输入向量的Volterra方程的最高二阶核。为了在频域找到核和输出,考虑了两倍于MISO系统扩展输入向量的长度。利用非线性过程第一原理模型的输入输出数据,对记忆长度为M=2的短滤波器系统进行了识别,验证结果在频域和时域响应上都有很好的拟合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信