Short-term Wind Speed Forecasting Model Based on Spiking Neural Network

Fengyang Han, Runmin Li, D. Qian
{"title":"Short-term Wind Speed Forecasting Model Based on Spiking Neural Network","authors":"Fengyang Han, Runmin Li, D. Qian","doi":"10.1109/ICAMECHS.2018.8507102","DOIUrl":null,"url":null,"abstract":"Short-term wind speed forecasting plays an important role in the daily power system operation. Therefore, this paper presents a novel model based on spiking neural network (SNN) used spike response model (SRM). Further, to achieve both smaller training errors and higher precision forecasting, the basic SpikeProp learning algorithm is improved by adaptively adjusting the learning rate and adding momentum items. Then, this paper selects the actual sampling data from a wind farm to verify the effectiveness and advantages of the proposed model.","PeriodicalId":325361,"journal":{"name":"2018 International Conference on Advanced Mechatronic Systems (ICAMechS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Advanced Mechatronic Systems (ICAMechS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAMECHS.2018.8507102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Short-term wind speed forecasting plays an important role in the daily power system operation. Therefore, this paper presents a novel model based on spiking neural network (SNN) used spike response model (SRM). Further, to achieve both smaller training errors and higher precision forecasting, the basic SpikeProp learning algorithm is improved by adaptively adjusting the learning rate and adding momentum items. Then, this paper selects the actual sampling data from a wind farm to verify the effectiveness and advantages of the proposed model.
基于峰值神经网络的短期风速预测模型
短期风速预报在电力系统的日常运行中起着重要的作用。为此,本文提出了一种基于尖峰响应模型(SRM)的尖峰神经网络(SNN)模型。进一步,为了实现更小的训练误差和更高的预测精度,通过自适应调整学习率和增加动量项来改进基本的SpikeProp学习算法。然后,选取了某风电场的实际采样数据,验证了所提模型的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信