Genetic Algorithm Based Clustering Optimization A Survey

Rawaa Nadhum
{"title":"Genetic Algorithm Based Clustering Optimization A Survey","authors":"Rawaa Nadhum","doi":"10.31642/jokmc/2018/100105","DOIUrl":null,"url":null,"abstract":"Genetic algorithm has an important role in improving clustering methods. When it comes to getting into a dataset, one of the most common methods used is clustering. Recent years have seen a rise in the number of articles interested in clustering, which may be attributed to the development of various new fields of application. Most clustering method's performance depends on initial values of parameters or the preprocessing of a dataset, so clustering needs to optimize. The improvement of clustering in two directions, either we improve the parameters or improve the input data. Ga is an evolutionary technique well-known in optimization. This survey deals with the methods that use a genetic algorithm to choose parameter values and input data. This study shows many important performance metrics used to get the optimal result in each research.","PeriodicalId":115908,"journal":{"name":"Journal of Kufa for Mathematics and Computer","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Kufa for Mathematics and Computer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31642/jokmc/2018/100105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Genetic algorithm has an important role in improving clustering methods. When it comes to getting into a dataset, one of the most common methods used is clustering. Recent years have seen a rise in the number of articles interested in clustering, which may be attributed to the development of various new fields of application. Most clustering method's performance depends on initial values of parameters or the preprocessing of a dataset, so clustering needs to optimize. The improvement of clustering in two directions, either we improve the parameters or improve the input data. Ga is an evolutionary technique well-known in optimization. This survey deals with the methods that use a genetic algorithm to choose parameter values and input data. This study shows many important performance metrics used to get the optimal result in each research.
基于遗传算法的聚类优化
遗传算法在改进聚类方法方面具有重要作用。当涉及到进入数据集时,最常用的方法之一是聚类。近年来,对集群感兴趣的文章数量有所增加,这可能归因于各种新应用领域的发展。大多数聚类方法的性能取决于参数的初始值或数据集的预处理,因此聚类需要优化。聚类的改进有两个方向,要么改进参数要么改进输入数据。遗传算法是一种以最优化著称的进化技术。本文讨论了使用遗传算法选择参数值和输入数据的方法。本研究展示了在每项研究中用于获得最佳结果的许多重要性能指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信