3D occluded object visualization by using integral imaging and semantic segmentation

Kazuaki Honda, Jaehoon Lee, Hyun-Woo Kim, Hideaki Uchino, M. Cho, Min-Chul Lee
{"title":"3D occluded object visualization by using integral imaging and semantic segmentation","authors":"Kazuaki Honda, Jaehoon Lee, Hyun-Woo Kim, Hideaki Uchino, M. Cho, Min-Chul Lee","doi":"10.1109/ICTC55196.2022.9952712","DOIUrl":null,"url":null,"abstract":"In this paper, we propose the improved occluded object visualization method by using integral imaging and semantic segmentation. Integral imaging is the passive 3D visualization technique that can generate 3D information through elemental images that have different perspectives of information on 3D objects. Moreover, it can be used to remove the occlusion in the 3D scene. The elemental image's various perspective information can be utilized to remove the occlusion in the 3D scene via the 3D image reconstruction process. However, the occlusion object pixels in the elemental image can degrade the image quality of the 3D image. Therefore, it is difficult to visualize the object without occlusion, clearly. To solve this problem, we propose the occluded object visualization method that can remove the occlusion and can visualize the target 3D object by using semantic segmentation. Semantic segmentation is the machine learning technique that can recognize the labeled object in the scene. Therefore, it can generate the specific labeled object mask image. Then, our proposed method can generate accurate 3D target object information. To prove our method, we carry out the simulation experiment and evaluate image quality with a correlation metric.","PeriodicalId":441404,"journal":{"name":"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTC55196.2022.9952712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we propose the improved occluded object visualization method by using integral imaging and semantic segmentation. Integral imaging is the passive 3D visualization technique that can generate 3D information through elemental images that have different perspectives of information on 3D objects. Moreover, it can be used to remove the occlusion in the 3D scene. The elemental image's various perspective information can be utilized to remove the occlusion in the 3D scene via the 3D image reconstruction process. However, the occlusion object pixels in the elemental image can degrade the image quality of the 3D image. Therefore, it is difficult to visualize the object without occlusion, clearly. To solve this problem, we propose the occluded object visualization method that can remove the occlusion and can visualize the target 3D object by using semantic segmentation. Semantic segmentation is the machine learning technique that can recognize the labeled object in the scene. Therefore, it can generate the specific labeled object mask image. Then, our proposed method can generate accurate 3D target object information. To prove our method, we carry out the simulation experiment and evaluate image quality with a correlation metric.
基于积分成像和语义分割的三维遮挡物可视化
本文提出了一种基于积分成像和语义分割的被遮挡物体可视化方法。积分成像是一种被动的三维可视化技术,它可以通过具有不同视角的三维物体信息的元素图像生成三维信息。此外,它还可以用于去除3D场景中的遮挡。通过三维图像重建过程,可以利用元素图像的各种透视信息来去除3D场景中的遮挡。然而,元素图像中的遮挡物体像素会降低三维图像的图像质量。因此,在没有遮挡的情况下,很难清晰地看到物体。为了解决这一问题,我们提出了一种能够去除遮挡的被遮挡物体可视化方法,通过语义分割实现目标三维物体的可视化。语义分割是一种能够识别场景中被标记对象的机器学习技术。因此,它可以生成特定的标记对象掩模图像。然后,我们提出的方法可以生成准确的三维目标物体信息。为了验证我们的方法,我们进行了仿真实验,并使用相关度量来评估图像质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信