{"title":"Prediction of Happiness Score of Countries by Considering Maximum Infection Rate of People by COVID-19 using Random Forest Algorithm","authors":"Ashish Kumar, Sudhanshu K. Mishra, Ayush Kejriwal","doi":"10.1109/CONIT55038.2022.9847791","DOIUrl":null,"url":null,"abstract":"In this paper, the relationship between COVID-19 Maximum Infection Rate (MIR) and the happiness indicators has been investigated for the prediction of Happiness Score of Countries using Random Forest (RF) algorithm. The per-formance of the proposed algorithm is also compared against five other algorithms such as Linear Regression (LR), Ada Boost Classifier (ABC), K-Nearest Neighbor (KNN), Gaussian Naive Bayes (NB) and Logistic Regression. The comparison of performance includes parameters like training accuracy, testing accuracy and computation time. It is clear from the observation that the proposed approach is superior to others. Then the parameters like MAE, MSE, RMSE, R2 Score, Adjusted R2 Score is calculated. This proposed algorithm can be used for other classification and regression work involving large amount of data with missing values like COVID- 19 datasets.","PeriodicalId":270445,"journal":{"name":"2022 2nd International Conference on Intelligent Technologies (CONIT)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Intelligent Technologies (CONIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONIT55038.2022.9847791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the relationship between COVID-19 Maximum Infection Rate (MIR) and the happiness indicators has been investigated for the prediction of Happiness Score of Countries using Random Forest (RF) algorithm. The per-formance of the proposed algorithm is also compared against five other algorithms such as Linear Regression (LR), Ada Boost Classifier (ABC), K-Nearest Neighbor (KNN), Gaussian Naive Bayes (NB) and Logistic Regression. The comparison of performance includes parameters like training accuracy, testing accuracy and computation time. It is clear from the observation that the proposed approach is superior to others. Then the parameters like MAE, MSE, RMSE, R2 Score, Adjusted R2 Score is calculated. This proposed algorithm can be used for other classification and regression work involving large amount of data with missing values like COVID- 19 datasets.