Improving the Accuracy of Gait Detection Using Computer Vision

Sota Sugiyama, Yuna Ogiso, Masataka Yamamoto, Y. Ishige, H. Takemura, N. Aikawa
{"title":"Improving the Accuracy of Gait Detection Using Computer Vision","authors":"Sota Sugiyama, Yuna Ogiso, Masataka Yamamoto, Y. Ishige, H. Takemura, N. Aikawa","doi":"10.1109/TENSYMP55890.2023.10223625","DOIUrl":null,"url":null,"abstract":"Using computer vision for gait analysis is easier and more cost-effective to implement in the field than using wearable devices or motion capture, etc. OpenPose is one of the freely available skeletal detection algorithms, but the accuracy of skeletal detection is not always high. Therefore, in this paper, the gait cycle is derived from the skeletal coordinate data obtained by general OpenPose. Based on the gait cycle, we propose a method to predict the coordinates and correct the skeletal coordinates.","PeriodicalId":314726,"journal":{"name":"2023 IEEE Region 10 Symposium (TENSYMP)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENSYMP55890.2023.10223625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Using computer vision for gait analysis is easier and more cost-effective to implement in the field than using wearable devices or motion capture, etc. OpenPose is one of the freely available skeletal detection algorithms, but the accuracy of skeletal detection is not always high. Therefore, in this paper, the gait cycle is derived from the skeletal coordinate data obtained by general OpenPose. Based on the gait cycle, we propose a method to predict the coordinates and correct the skeletal coordinates.
利用计算机视觉提高步态检测的准确性
使用计算机视觉进行步态分析比使用可穿戴设备或动作捕捉等更容易,更具成本效益。OpenPose是一种免费的骨骼检测算法,但骨骼检测的精度并不总是很高。因此,本文的步态周期来源于通用OpenPose获取的骨骼坐标数据。基于步态周期,提出了一种预测和校正骨骼坐标的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信