Pulmonary nodules computer-aided diagnosis based on feature integration and ABC-LVQ network

Qing-Shan Zhao, Guo-hua Ji, Yu-Lan Hu, G. Meng
{"title":"Pulmonary nodules computer-aided diagnosis based on feature integration and ABC-LVQ network","authors":"Qing-Shan Zhao, Guo-hua Ji, Yu-Lan Hu, G. Meng","doi":"10.1504/IJCSM.2018.096322","DOIUrl":null,"url":null,"abstract":"For the computer aided diagnosis of lung cancer, a malignancy identification method based on multi-feature integration and learning vector quantisation (LVQ) network optimised by artificial bee colony (ABC) is proposed in this work. Firstly, the traditional features and the hidden features learned by Sparse Autoencoder of nodules are respectively extracted, and then the canonical correlation analysis (CCA) is used for feature integration. For classification, the ABC algorithm is used to optimise the LVQ network to overcome its sensitivity to initial value. Finally, the integrated features of nodules are input into the optimised classifier and the diagnosis results are obtained. Experimental results on LIDC pulmonary nodule image datasets show that this method can effectively identify the malignancy of nodules, with the area under the receiver operating characteristic (ROC) curve (AUC) of 0.90, 0.83, 0.80, 0.80, 0.85 for nodules of malignancy 1-5 classification, respectively.","PeriodicalId":399731,"journal":{"name":"Int. J. Comput. Sci. Math.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCSM.2018.096322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For the computer aided diagnosis of lung cancer, a malignancy identification method based on multi-feature integration and learning vector quantisation (LVQ) network optimised by artificial bee colony (ABC) is proposed in this work. Firstly, the traditional features and the hidden features learned by Sparse Autoencoder of nodules are respectively extracted, and then the canonical correlation analysis (CCA) is used for feature integration. For classification, the ABC algorithm is used to optimise the LVQ network to overcome its sensitivity to initial value. Finally, the integrated features of nodules are input into the optimised classifier and the diagnosis results are obtained. Experimental results on LIDC pulmonary nodule image datasets show that this method can effectively identify the malignancy of nodules, with the area under the receiver operating characteristic (ROC) curve (AUC) of 0.90, 0.83, 0.80, 0.80, 0.85 for nodules of malignancy 1-5 classification, respectively.
基于特征集成和ABC-LVQ网络的肺结节计算机辅助诊断
针对肺癌的计算机辅助诊断,提出了一种基于人工蜂群(ABC)优化的多特征集成学习向量量化(LVQ)网络的恶性肿瘤识别方法。首先分别提取结节的传统特征和稀疏自编码器学习到的隐藏特征,然后利用典型相关分析(CCA)进行特征整合;在分类方面,采用ABC算法对LVQ网络进行优化,克服其对初值的敏感性。最后,将结节的综合特征输入到优化的分类器中,得到诊断结果。在LIDC肺结节图像数据集上的实验结果表明,该方法能有效识别结节的恶性程度,对于恶性1-5分类的结节,其ROC曲线下面积(AUC)分别为0.90、0.83、0.80、0.80、0.85。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信