Efficient reduction of Computed Tomography problems to the developed problem of recovery functions in the form of a finite convolution in the norms of "flexible" Hilbert Sobolev and Sobolev-Radon spaces according to the scheme of the Computational (numerical) diameter

N. Temirgaliyev, Sh. K. Abikenova, Sh.U. Azhgaliyev, Y. Y. Nurmoldin, G.Y. Taugynbayeva, A. Zhubanysheva
{"title":"Efficient reduction of Computed Tomography problems to the developed problem of recovery functions in the form of a finite convolution in the norms of \"flexible\" Hilbert Sobolev and Sobolev-Radon spaces according to the scheme of the Computational (numerical) diameter","authors":"N. Temirgaliyev, Sh. K. Abikenova, Sh.U. Azhgaliyev, Y. Y. Nurmoldin, G.Y. Taugynbayeva, A. Zhubanysheva","doi":"10.32523/2616-7182/bulmathenu.2023/1.3","DOIUrl":null,"url":null,"abstract":"Computed tomography is a vital need to know the structure of the inside of the body from the information obtained from its transillumination without destroying the shell. The format presented here forsolving this massively understandable problem, which can only be theoretical and mathematical with subsequent engineering implementation, is fundamentally expressed in the approximate formula established by the authors in 2019 in approximate formula on a plane with a two-dimensional Cartesian coordinate system. In this article,this breakthrough is brought to a complete surprise in the equivalence of the fundamental problems of Computed Tomography and both widely known and developed in new content continuations of the problems of recovery functions by operators of the form of finite convolution of values approximated at the grid nodes with specially constructed kernels: \\[sup\\left\\{{\\left\\|f\\left(x\\right)-\\sum^N_{k=1}{{\\left(R^2\\right)}^{-1}Rf\\left({\\xi }_k\\right)}R\\left(\\textrm{Ф}\\left(y-{\\xi }_k\\right)\\right)(x)\\right\\|}_{W^{{\\left\\|y\\right\\|}^{\\frac{s-1}{2}}}_2\\left(S^{s-1}\\times R^1\\right)}: f\\in W^{әlpha \\left(y\\right) \\cdot{\\left\\|y\\right\\|}^{\\frac{s-1}{2}}}_2\\left(S^{s-1}\\times R^1\\right)\\right\\}әsymp \\] \\[әsymp sup\\left\\{{\\left\\|f(x)-\\sum^N_{k=1}{f\\left({\\xi }_k\\right)}\\textrm{Ф}(x-{\\xi }_k)\\right\\|}_{L^2\\left(E_s\\right)}: f\\in W^{әlpha \\left(y\\right)}_2\\left(E_s\\right)\\right\\},\\] As is customary in Mathematics (in other sciences too), any claim for a breakthrough must be demonstratedin results of fundamental importance. In the resulting equivalence, the working part turned out to be in astate of enough for illustrative and, necessary, fundamental conclusions readiness according to the ComputerScience offered by the first author (according to the list) in 1996 and filled in Kazakhstan with far from trivialcontent of the Computational (numerical) diameter (C(N)D). Namely, a wide range of developments in thetheory of C(N)D instantly automatically leads to new theoretical and direct practical applications of advances in Computed Tomography, including analytic expressibility in explicit formulas of the computational aggregates of Tomography in terms of scanned quantities. Among them is also the conclusion that in Computed Tomographythere is no better scanning method than the Radon transform.","PeriodicalId":286555,"journal":{"name":"BULLETIN of the L N Gumilyov Eurasian National University MATHEMATICS COMPUTER SCIENCE MECHANICS Series","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BULLETIN of the L N Gumilyov Eurasian National University MATHEMATICS COMPUTER SCIENCE MECHANICS Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32523/2616-7182/bulmathenu.2023/1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Computed tomography is a vital need to know the structure of the inside of the body from the information obtained from its transillumination without destroying the shell. The format presented here forsolving this massively understandable problem, which can only be theoretical and mathematical with subsequent engineering implementation, is fundamentally expressed in the approximate formula established by the authors in 2019 in approximate formula on a plane with a two-dimensional Cartesian coordinate system. In this article,this breakthrough is brought to a complete surprise in the equivalence of the fundamental problems of Computed Tomography and both widely known and developed in new content continuations of the problems of recovery functions by operators of the form of finite convolution of values approximated at the grid nodes with specially constructed kernels: \[sup\left\{{\left\|f\left(x\right)-\sum^N_{k=1}{{\left(R^2\right)}^{-1}Rf\left({\xi }_k\right)}R\left(\textrm{Ф}\left(y-{\xi }_k\right)\right)(x)\right\|}_{W^{{\left\|y\right\|}^{\frac{s-1}{2}}}_2\left(S^{s-1}\times R^1\right)}: f\in W^{әlpha \left(y\right) \cdot{\left\|y\right\|}^{\frac{s-1}{2}}}_2\left(S^{s-1}\times R^1\right)\right\}әsymp \] \[әsymp sup\left\{{\left\|f(x)-\sum^N_{k=1}{f\left({\xi }_k\right)}\textrm{Ф}(x-{\xi }_k)\right\|}_{L^2\left(E_s\right)}: f\in W^{әlpha \left(y\right)}_2\left(E_s\right)\right\},\] As is customary in Mathematics (in other sciences too), any claim for a breakthrough must be demonstratedin results of fundamental importance. In the resulting equivalence, the working part turned out to be in astate of enough for illustrative and, necessary, fundamental conclusions readiness according to the ComputerScience offered by the first author (according to the list) in 1996 and filled in Kazakhstan with far from trivialcontent of the Computational (numerical) diameter (C(N)D). Namely, a wide range of developments in thetheory of C(N)D instantly automatically leads to new theoretical and direct practical applications of advances in Computed Tomography, including analytic expressibility in explicit formulas of the computational aggregates of Tomography in terms of scanned quantities. Among them is also the conclusion that in Computed Tomographythere is no better scanning method than the Radon transform.
根据计算(数值)直径格式,将计算机断层扫描问题有效地简化为在“柔性”Hilbert Sobolev和Sobolev- radon空间的范数中以有限卷积形式的恢复函数的发展问题
在不破坏外壳的情况下,通过透视获得的信息来了解身体内部的结构,计算机断层扫描是至关重要的。本文提出的解决这个非常容易理解的问题的格式,在随后的工程实施中只能是理论和数学的,基本上用作者在2019年建立的二维笛卡尔坐标系平面上的近似公式来表示。在本文中,这一突破在计算机断层扫描基本问题的等价性方面带来了完全的惊喜,并且在恢复函数问题的新内容延续中得到了广泛的发展和发展,这些问题是由具有特殊构造核的网格节点近似值的有限卷积形式的算子实现的:\[sup\left\{{\left\|f\left(x\right)-\sum^N_{k=1}{{\left(R^2\right)}^{-1}Rf\left({\xi }_k\right)}R\left(\textrm{Ф}\left(y-{\xi }_k\right)\right)(x)\right\|}_{W^{{\left\|y\right\|}^{\frac{s-1}{2}}}_2\left(S^{s-1}\times R^1\right)}: f\in W^{әlpha \left(y\right) \cdot{\left\|y\right\|}^{\frac{s-1}{2}}}_2\left(S^{s-1}\times R^1\right)\right\}әsymp \]\[әsymp sup\left\{{\left\|f(x)-\sum^N_{k=1}{f\left({\xi }_k\right)}\textrm{Ф}(x-{\xi }_k)\right\|}_{L^2\left(E_s\right)}: f\in W^{әlpha \left(y\right)}_2\left(E_s\right)\right\},\]按照数学(在其他科学中也是如此)的惯例,任何突破性的主张都必须用具有根本重要性的结果来证明。在得到的等效中,根据第一作者(根据列表)在1996年提供的《计算机科学》(ComputerScience),工作部分被证明处于足以进行说明性和必要的基本结论准备的状态,并在哈萨克斯坦填充了远不平凡的计算(数值)直径(C(N)D)内容。也就是说,C(N)D理论的广泛发展立即自动导致计算机断层扫描技术进步的新的理论和直接实际应用,包括以扫描量表示的断层扫描计算总量的显式公式的解析可表达性。其中还得出结论,在计算机层析成像中没有比Radon变换更好的扫描方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信