Dynamic Scheduling for Progressive Large-Scale Visualization

M. Flatken, A. Berres, Jonas Merkel, I. Hotz, A. Gerndt, H. Hagen
{"title":"Dynamic Scheduling for Progressive Large-Scale Visualization","authors":"M. Flatken, A. Berres, Jonas Merkel, I. Hotz, A. Gerndt, H. Hagen","doi":"10.2312/eurovisshort.20151122","DOIUrl":null,"url":null,"abstract":"The ever-increasing compute capacity of high-performance systems enables scientists to simulate physical phenomena with a high spatial and temporal accuracy. Thus, the simulation output can yield dataset sizes of many terabytes. An efficient analysis and visualization process becomes very difficult especially for explorative scenarios where users continuously change input parameters. Using a distributed rendering pipeline may relieve the visualization frontend considerably but is often not sufficient. Therefore, we additionally propose a progressive data streaming and rendering approach. The main contribution of our method is the importance-guided order of data processing for block structured datasets. This requires a dynamic scheduling of data chunks on the parallel post-processing system which has been implemented by using an R-Tree. In this paper, we demonstrate the efficiency of our implementation for view-dependent feature extraction with varying viewpoints.","PeriodicalId":224719,"journal":{"name":"Eurographics Conference on Visualization","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Conference on Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/eurovisshort.20151122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The ever-increasing compute capacity of high-performance systems enables scientists to simulate physical phenomena with a high spatial and temporal accuracy. Thus, the simulation output can yield dataset sizes of many terabytes. An efficient analysis and visualization process becomes very difficult especially for explorative scenarios where users continuously change input parameters. Using a distributed rendering pipeline may relieve the visualization frontend considerably but is often not sufficient. Therefore, we additionally propose a progressive data streaming and rendering approach. The main contribution of our method is the importance-guided order of data processing for block structured datasets. This requires a dynamic scheduling of data chunks on the parallel post-processing system which has been implemented by using an R-Tree. In this paper, we demonstrate the efficiency of our implementation for view-dependent feature extraction with varying viewpoints.
渐进式大规模可视化的动态调度
高性能系统不断增加的计算能力使科学家能够以高时空精度模拟物理现象。因此,模拟输出可以产生许多tb的数据集大小。高效的分析和可视化过程变得非常困难,特别是对于用户不断更改输入参数的探索性场景。使用分布式呈现管道可能会大大减轻可视化前端的负担,但通常还不够。因此,我们还提出了一种渐进式数据流和呈现方法。我们的方法的主要贡献是对块结构数据集的数据处理的重要性引导顺序。这需要在并行后处理系统上对数据块进行动态调度,这是通过使用R-Tree实现的。在本文中,我们展示了我们在不同视点的视图依赖特征提取实现的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信