Automatic Classification of Ultraviolet Aurora Images Based on Texture and Shape Features

S. Han, Zhensen Wu, Guangli Wu, Jun Tan
{"title":"Automatic Classification of Ultraviolet Aurora Images Based on Texture and Shape Features","authors":"S. Han, Zhensen Wu, Guangli Wu, Jun Tan","doi":"10.1109/ICIG.2011.12","DOIUrl":null,"url":null,"abstract":"Aurora is the typical ionosphere track generated by the interaction of solar wind and magnetosphere, and its detection is significant to study of space weather activity. Space-borne ultraviolet detectors, especially far ultraviolet band image detecting device, provide abundant detecting data. Based on the special morphology of ultraviolet aurora images, the combination of texture and shape features is utilized to extract the features of ultraviolet aurora images, and then a support vector machine (SVM) is employed to classify the auroras. The experiment based on ultraviolet aurora image data obtained by the Polar satellite shows the feasibility and effectiveness of our feature representation method.","PeriodicalId":277974,"journal":{"name":"2011 Sixth International Conference on Image and Graphics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Sixth International Conference on Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIG.2011.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Aurora is the typical ionosphere track generated by the interaction of solar wind and magnetosphere, and its detection is significant to study of space weather activity. Space-borne ultraviolet detectors, especially far ultraviolet band image detecting device, provide abundant detecting data. Based on the special morphology of ultraviolet aurora images, the combination of texture and shape features is utilized to extract the features of ultraviolet aurora images, and then a support vector machine (SVM) is employed to classify the auroras. The experiment based on ultraviolet aurora image data obtained by the Polar satellite shows the feasibility and effectiveness of our feature representation method.
基于纹理和形状特征的紫外极光图像自动分类
极光是太阳风与磁层相互作用产生的典型电离层轨迹,其探测对空间天气活动研究具有重要意义。星载紫外探测器,特别是远紫外波段图像探测装置,提供了丰富的探测数据。基于紫外极光图像的特殊形态特征,采用纹理特征和形状特征相结合的方法提取紫外极光图像的特征,然后利用支持向量机对紫外极光图像进行分类。基于极地卫星紫外极光图像数据的实验验证了该特征表示方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信