Zilla-64: A Bangla Handwritten Word Dataset Of 64 Districts` Name of Bangladesh and Recognition Using Holistic Approach

Md Ali Azad, H. Singha, Mahadi Hasan Nahid
{"title":"Zilla-64: A Bangla Handwritten Word Dataset Of 64 Districts` Name of Bangladesh and Recognition Using Holistic Approach","authors":"Md Ali Azad, H. Singha, Mahadi Hasan Nahid","doi":"10.1109/icsct53883.2021.9642594","DOIUrl":null,"url":null,"abstract":"Bangla Handwritten Word Recognition (BHWR) is a very challenging task due to the high curvature nature of the character, overlapping between characters, and flourishes in the writing style of Bangla Handwritten Word (BHW). Despite the importance and challenges of BHWR, the handwritten word dataset of Bangla is very few. In this paper, a new challenging Bangla word dataset which, we called ‘Zilla-64’, is introduced, and also the preparation of the dataset is discussed. To the best of our knowledge, this is the first well-labeled Bangla word dataset. This dataset can be used for gender, age, and education level handwritten related researches. Deep learning shows tremendous success in the handwritten recognition area. Because of the popularity of deep learning methods and for testing the performance of the dataset, a holistic approach based, Deep Convolutional Neural Network (DCNN) is applied on the dataset and achieved 93.30% accuracy. The Zilla-64 dataset is made publicly available at this link https://github.com/MahadiHasanNahid/Zilla-64-Dataset.","PeriodicalId":320103,"journal":{"name":"2021 International Conference on Science & Contemporary Technologies (ICSCT)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Science & Contemporary Technologies (ICSCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icsct53883.2021.9642594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bangla Handwritten Word Recognition (BHWR) is a very challenging task due to the high curvature nature of the character, overlapping between characters, and flourishes in the writing style of Bangla Handwritten Word (BHW). Despite the importance and challenges of BHWR, the handwritten word dataset of Bangla is very few. In this paper, a new challenging Bangla word dataset which, we called ‘Zilla-64’, is introduced, and also the preparation of the dataset is discussed. To the best of our knowledge, this is the first well-labeled Bangla word dataset. This dataset can be used for gender, age, and education level handwritten related researches. Deep learning shows tremendous success in the handwritten recognition area. Because of the popularity of deep learning methods and for testing the performance of the dataset, a holistic approach based, Deep Convolutional Neural Network (DCNN) is applied on the dataset and achieved 93.30% accuracy. The Zilla-64 dataset is made publicly available at this link https://github.com/MahadiHasanNahid/Zilla-64-Dataset.
Zilla-64:孟加拉国64个地区名称的孟加拉语手写词数据集及其整体识别方法
孟加拉文手写字识别(BHWR)是一项非常具有挑战性的任务,因为字符的高曲率性质,字符之间的重叠,以及孟加拉文手写字(BHW)的书写风格。尽管BHWR的重要性和挑战,但孟加拉语的手写词数据集很少。本文介绍了一个新的具有挑战性的孟加拉语词数据集,我们称之为“Zilla-64”,并讨论了数据集的准备工作。据我们所知,这是第一个标记良好的孟加拉语单词数据集。本数据集可用于性别、年龄、教育程度等手写体的相关研究。深度学习在手写识别领域取得了巨大的成功。由于深度学习方法的普及以及为了测试数据集的性能,在数据集上应用了基于深度卷积神经网络(DCNN)的整体方法,准确率达到了93.30%。Zilla-64数据集在此链接https://github.com/MahadiHasanNahid/Zilla-64-Dataset上公开提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信