Movement-immune respiration monitoring using automatic DC-correction algorithm for CW Doppler radar system

Yiran Li, Guochao Wang, Changzhan Gu, Changzhi Li
{"title":"Movement-immune respiration monitoring using automatic DC-correction algorithm for CW Doppler radar system","authors":"Yiran Li, Guochao Wang, Changzhan Gu, Changzhi Li","doi":"10.1109/BIOWIRELESS.2014.6827740","DOIUrl":null,"url":null,"abstract":"Doppler radar has the capability to remotely monitor human respiration. However, in real applications random body movements during measurement will cause drift of “DC” level in the experiment results. Also, the dc level will shift slowly with the temperature change of the radar circuit. Those DC drifts will cause inaccurate measurement results. To solve the dc drift issue during the experiments, an automatic DC-correction algorithm is developed. Experiment results show that this algorithm eliminates undesirable DC drifts and offset while recovering useful information of the original respiration signal. It is able to provide reliable respiration measurement even if there are large body movements that otherwise overwhelm the desired signal.","PeriodicalId":341652,"journal":{"name":"2014 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOWIRELESS.2014.6827740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Doppler radar has the capability to remotely monitor human respiration. However, in real applications random body movements during measurement will cause drift of “DC” level in the experiment results. Also, the dc level will shift slowly with the temperature change of the radar circuit. Those DC drifts will cause inaccurate measurement results. To solve the dc drift issue during the experiments, an automatic DC-correction algorithm is developed. Experiment results show that this algorithm eliminates undesirable DC drifts and offset while recovering useful information of the original respiration signal. It is able to provide reliable respiration measurement even if there are large body movements that otherwise overwhelm the desired signal.
连续波多普勒雷达系统运动免疫呼吸自动校正算法
多普勒雷达能够远程监测人体呼吸。然而,在实际应用中,测量过程中的随机物体运动将导致实验结果中的“直流”电平漂移。同时,直流电平会随着雷达电路的温度变化而缓慢变化。这些直流漂移会导致测量结果不准确。为了解决实验中的直流漂移问题,提出了一种自动直流校正算法。实验结果表明,该算法在恢复原始呼吸信号有用信息的同时,消除了不良的直流漂移和偏移。它能够提供可靠的呼吸测量,即使有较大的身体运动,否则压倒所需的信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信