Improved genetic algorithm for the design of the optimal antenna division in sub-arrays: a multi-objective genetic algorithm

G. Golino
{"title":"Improved genetic algorithm for the design of the optimal antenna division in sub-arrays: a multi-objective genetic algorithm","authors":"G. Golino","doi":"10.1109/RADAR.2005.1435903","DOIUrl":null,"url":null,"abstract":"In this paper a novel approach to the optimisation of the ECCM (electronic counter measures) capabilities of a phased array radar has been proposed. The division in sub-arrays for adaptive digital beamforming is performed by a MOGA (multi-objective genetic algorithm) which aims to find optimal trade-offs between competitive objectives (detection probability, accuracy of the target angular estimation, level of the side lobes, etc.). The solutions obtained after several cycles of the algorithm for a study case (square phased array antenna with 64 radiating elements) are presented.","PeriodicalId":444253,"journal":{"name":"IEEE International Radar Conference, 2005.","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Radar Conference, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2005.1435903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper a novel approach to the optimisation of the ECCM (electronic counter measures) capabilities of a phased array radar has been proposed. The division in sub-arrays for adaptive digital beamforming is performed by a MOGA (multi-objective genetic algorithm) which aims to find optimal trade-offs between competitive objectives (detection probability, accuracy of the target angular estimation, level of the side lobes, etc.). The solutions obtained after several cycles of the algorithm for a study case (square phased array antenna with 64 radiating elements) are presented.
子阵天线最优划分设计的改进遗传算法:多目标遗传算法
本文提出了一种优化相控阵雷达电子对抗能力的新方法。自适应数字波束形成的子阵列划分由多目标遗传算法(MOGA)执行,该算法旨在找到竞争目标(检测概率、目标角度估计精度、侧瓣电平等)之间的最佳权衡。给出了以64个辐射单元的方形相控阵天线为例,经过多次循环求解得到的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信