Non-contact, Rapid and Robust Method to Determine the Optimal EEG Electrode Positions Using Optical Motion Tracking System

M. Souganttika, James Kusuma Dewa Halim, Nurbaya Siti, S. Foong, Hwee Lee Ng, Corrine Kang, Siti Maryam, Faith Chan
{"title":"Non-contact, Rapid and Robust Method to Determine the Optimal EEG Electrode Positions Using Optical Motion Tracking System","authors":"M. Souganttika, James Kusuma Dewa Halim, Nurbaya Siti, S. Foong, Hwee Lee Ng, Corrine Kang, Siti Maryam, Faith Chan","doi":"10.1109/TENCON54134.2021.9707339","DOIUrl":null,"url":null,"abstract":"Electroencephalography (EEG) is a diagnostic test that involves placing electrodes at specific locations on the human head to detect and study electrical signals of brain activity. Current practitioners use a measuring tape and wax pencil to determine electrode positions and mark them using the internationally recognized 10–20 system. This meticulous procedure is time-consuming and laborious as it is manual. Hence, in this paper, we propose a rapid and robust method to determine the optimal electrode positions using an optical motion capture system (Optitrack) and a customized stylus. The stylus affixed with reflective markers is tracked by the motion capture system as it is used to trace different regions of the head in order to estimate the head geometry utilizing the 3D coordinate data of the trace throughout time. The 21 EEG electrode positions are then algorithmically predicted using the acquired spatial coordinate data. With testing under various experimental settings, the accuracy value in terms of Root Mean Square Error (RMSE) of the predicted EEG electrode positions is less than 1 cm with half the amount of time needed. Thus, the proposed method is assured to be faster and decreases errors due to imprecise electrode placement and determination.","PeriodicalId":405859,"journal":{"name":"TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON54134.2021.9707339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Electroencephalography (EEG) is a diagnostic test that involves placing electrodes at specific locations on the human head to detect and study electrical signals of brain activity. Current practitioners use a measuring tape and wax pencil to determine electrode positions and mark them using the internationally recognized 10–20 system. This meticulous procedure is time-consuming and laborious as it is manual. Hence, in this paper, we propose a rapid and robust method to determine the optimal electrode positions using an optical motion capture system (Optitrack) and a customized stylus. The stylus affixed with reflective markers is tracked by the motion capture system as it is used to trace different regions of the head in order to estimate the head geometry utilizing the 3D coordinate data of the trace throughout time. The 21 EEG electrode positions are then algorithmically predicted using the acquired spatial coordinate data. With testing under various experimental settings, the accuracy value in terms of Root Mean Square Error (RMSE) of the predicted EEG electrode positions is less than 1 cm with half the amount of time needed. Thus, the proposed method is assured to be faster and decreases errors due to imprecise electrode placement and determination.
基于光学运动跟踪系统的脑电电极最佳位置的非接触、快速和鲁棒确定方法
脑电图(EEG)是一种诊断测试,它将电极放置在人类头部的特定位置,以检测和研究大脑活动的电信号。目前的从业者使用卷尺和蜡铅笔来确定电极位置,并使用国际公认的10-20系统进行标记。这个细致的程序是费时费力的,因为它是手工的。因此,在本文中,我们提出了一种快速而稳健的方法来确定最佳电极位置,该方法使用光学运动捕捉系统(Optitrack)和定制的触控笔。带有反射标记的触控笔由动作捕捉系统跟踪,因为它用于跟踪头部的不同区域,以便利用整个时间的跟踪的3D坐标数据来估计头部几何形状。然后利用获取的空间坐标数据对21个脑电电极位置进行算法预测。通过各种实验设置的测试,预测EEG电极位置的均方根误差(RMSE)精度值小于1 cm,所需时间减少了一半。因此,所提出的方法保证速度更快,并减少了由于电极放置和测定不精确而导致的误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信