Effective Classification for Multi-modal Behavioral Authentication on Large-Scale Data

Shuji Yamaguchi, Hidehito Gomi, Ryosuke Kobayashi, Tran Thao Phuong, Mhd Irvan, R. Yamaguchi
{"title":"Effective Classification for Multi-modal Behavioral Authentication on Large-Scale Data","authors":"Shuji Yamaguchi, Hidehito Gomi, Ryosuke Kobayashi, Tran Thao Phuong, Mhd Irvan, R. Yamaguchi","doi":"10.1109/AsiaJCIS50894.2020.00027","DOIUrl":null,"url":null,"abstract":"We propose an effective classification algorithm for machine learning to achieve higher performance for multi-modal behavioral authentication systems. Our algorithm uses a multiclass classification scheme that has a smaller number of classes than the number of users stored in the dataset. We also propose metrics, the self-mix-classified rate, other-single-classified rate, and equal-classified rate, for use with the proposed algorithm to determine an optimal number of classes for behavioral authentication. We conducted experiments using a large-scale dataset of activity histories that are stored when 10,000 users use commercial smartphone-applications to analyze performance measures such as false rejection rate, false acceptance rate, and equal error rate obtained with our proposed algorithm. The results indicate our algorithm achieved higher performance than that for previous ones.","PeriodicalId":247481,"journal":{"name":"2020 15th Asia Joint Conference on Information Security (AsiaJCIS)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 15th Asia Joint Conference on Information Security (AsiaJCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AsiaJCIS50894.2020.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose an effective classification algorithm for machine learning to achieve higher performance for multi-modal behavioral authentication systems. Our algorithm uses a multiclass classification scheme that has a smaller number of classes than the number of users stored in the dataset. We also propose metrics, the self-mix-classified rate, other-single-classified rate, and equal-classified rate, for use with the proposed algorithm to determine an optimal number of classes for behavioral authentication. We conducted experiments using a large-scale dataset of activity histories that are stored when 10,000 users use commercial smartphone-applications to analyze performance measures such as false rejection rate, false acceptance rate, and equal error rate obtained with our proposed algorithm. The results indicate our algorithm achieved higher performance than that for previous ones.
大规模数据多模态行为认证的有效分类
我们提出了一种有效的机器学习分类算法,以实现多模态行为认证系统的更高性能。我们的算法使用多类分类方案,其类的数量少于数据集中存储的用户数量。我们还提出了自混合分类率、其他单一分类率和等分类率等指标,用于所提出的算法来确定行为认证的最佳类数。我们使用10000名用户使用商业智能手机应用程序时存储的大规模活动历史数据集进行了实验,以分析使用我们提出的算法获得的错误拒绝率、错误接受率和相等错误率等性能指标。结果表明,该算法的性能优于以往的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信