Training of the Beta wavelet networks by the frames theory: Application to face recognition

M. Zaied, O. Jemai, C. Ben Amar
{"title":"Training of the Beta wavelet networks by the frames theory: Application to face recognition","authors":"M. Zaied, O. Jemai, C. Ben Amar","doi":"10.1109/IPTA.2008.4743756","DOIUrl":null,"url":null,"abstract":"A wavelets neural network is a hybrid classifier composed of a neuronal contraption and wavelets as functions of activation. Our approach of face recognition is divided in two parts: the training phase and the recognition phase. The first consists in optimizing a wavelets neural network for every training picture face. A new technique of training of these wavelets networks which based on the frames theory is proposed as a remedy to the inconveniences of the classical training algorithms. The specificity of a BWNN to a face and the notion of SuperWavelet have been exploited to propose an approach of face recognition. Finally, we have compared our method of recognition to other ones which are used for face recognition that are applied on the AT&T (ORL) and FERET faces basis. We reached a face recognition rate that exceeds 90% for two images per person in the training step.","PeriodicalId":384072,"journal":{"name":"2008 First Workshops on Image Processing Theory, Tools and Applications","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 First Workshops on Image Processing Theory, Tools and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2008.4743756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

A wavelets neural network is a hybrid classifier composed of a neuronal contraption and wavelets as functions of activation. Our approach of face recognition is divided in two parts: the training phase and the recognition phase. The first consists in optimizing a wavelets neural network for every training picture face. A new technique of training of these wavelets networks which based on the frames theory is proposed as a remedy to the inconveniences of the classical training algorithms. The specificity of a BWNN to a face and the notion of SuperWavelet have been exploited to propose an approach of face recognition. Finally, we have compared our method of recognition to other ones which are used for face recognition that are applied on the AT&T (ORL) and FERET faces basis. We reached a face recognition rate that exceeds 90% for two images per person in the training step.
基于帧理论的β小波网络训练:在人脸识别中的应用
小波神经网络是由神经元装置和小波作为激活函数组成的混合分类器。我们的人脸识别方法分为两个部分:训练阶段和识别阶段。首先是为每个训练图像人脸优化小波神经网络。针对传统小波网络训练算法的不足,提出了一种基于框架理论的小波网络训练新方法。利用小波神经网络对人脸的特异性和超小波的概念,提出了一种人脸识别方法。最后,我们将我们的识别方法与应用于AT&T (ORL)和FERET人脸基础上的人脸识别方法进行了比较。在训练步骤中,我们达到了每人两张图像的人脸识别率超过90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信