Contour interpolation with bounded dihedral angles

S. Bereg, Minghui Jiang, B. Zhu
{"title":"Contour interpolation with bounded dihedral angles","authors":"S. Bereg, Minghui Jiang, B. Zhu","doi":"10.2312/SM.20041406","DOIUrl":null,"url":null,"abstract":"In this paper, we present the first nontrivial theoretical bound on the quality of the 3D solids generated by any contour interpolation method. Given two arbitrary parallel contour slices with n vertices in 3D, let α be the smallest angle in the constrained Delaunay triangulation of the corresponding 2D contour overlay, we present a contour interpolation method which reconstructs a 3D solid with the minimum dihedral angle of at least α/8. Our algorithm runs in O(nlogn) time where n is the size of the contour overlay.We also present a heuristic algorithm that optimizes the dihedral angles of a mesh representing a surface in 3D.","PeriodicalId":405863,"journal":{"name":"ACM Symposium on Solid Modeling and Applications","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Symposium on Solid Modeling and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/SM.20041406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, we present the first nontrivial theoretical bound on the quality of the 3D solids generated by any contour interpolation method. Given two arbitrary parallel contour slices with n vertices in 3D, let α be the smallest angle in the constrained Delaunay triangulation of the corresponding 2D contour overlay, we present a contour interpolation method which reconstructs a 3D solid with the minimum dihedral angle of at least α/8. Our algorithm runs in O(nlogn) time where n is the size of the contour overlay.We also present a heuristic algorithm that optimizes the dihedral angles of a mesh representing a surface in 3D.
有界二面角轮廓插值
在本文中,我们提出了由任何轮廓插值方法生成的三维实体质量的第一个非平凡理论界。给定三维中任意两个具有n个顶点的平行轮廓切片,设α为对应二维轮廓叠加的约束Delaunay三角剖分中的最小角,提出了一种重构最小二面角至少为α/8的三维实体的轮廓插值方法。我们的算法在O(nlogn)时间内运行,其中n是轮廓覆盖的大小。我们还提出了一种启发式算法来优化代表三维表面的网格的二面角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信