Next-to-leading power threshold factorization for Drell-Yan production

S. Jaskiewicz
{"title":"Next-to-leading power threshold factorization for Drell-Yan production","authors":"S. Jaskiewicz","doi":"10.22323/1.375.0039","DOIUrl":null,"url":null,"abstract":"We present the next-to-leading power (NLP) factorization formula for the $q\\bar{q}\\to \\gamma^*+X$ channel of the Drell-Yan production near the kinematic threshold limit. The formalism used for the computation of next-to-leading power corrections within soft-collinear effective field theory is introduced, we discuss the emergence of new objects, the {\\it{NLP collinear functions}}, and define them through an operator matching equation. We review the leading power factorization before extending it to subleading powers. We also present the one-loop result for the newly introduced collinear function, and demonstrate explicitly conceptual issues in performing next-to-leading logarithmic resummation at next-to-leading power.","PeriodicalId":440413,"journal":{"name":"Proceedings of 14th International Symposium on Radiative Corrections — PoS(RADCOR2019)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 14th International Symposium on Radiative Corrections — PoS(RADCOR2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.375.0039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present the next-to-leading power (NLP) factorization formula for the $q\bar{q}\to \gamma^*+X$ channel of the Drell-Yan production near the kinematic threshold limit. The formalism used for the computation of next-to-leading power corrections within soft-collinear effective field theory is introduced, we discuss the emergence of new objects, the {\it{NLP collinear functions}}, and define them through an operator matching equation. We review the leading power factorization before extending it to subleading powers. We also present the one-loop result for the newly introduced collinear function, and demonstrate explicitly conceptual issues in performing next-to-leading logarithmic resummation at next-to-leading power.
Drell-Yan生产的第二领先的功率阈值分解
我们提出了Drell-Yan生产接近运动阈值极限的$q\bar{q}\to \gamma^*+X$通道的次领先功率(NLP)分解公式。介绍了软共线有效场理论中次领先功率修正的计算形式,讨论了新对象的出现,{\it{NLP collinear functions}}并通过算子匹配方程定义了它们。在将其推广到次主导力量之前,我们回顾了主导力量分解。我们还介绍了新引入的共线函数的单环结果,并明确演示了在次领先功率下执行次领先对数恢复的概念问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信