{"title":"A co-evolutionary algorithm based on mixed mutation strategy for WDP in combinatorial auction","authors":"Wei-gen Hou, Hongbin Dong, Guisheng Yin, Yuxin Dong","doi":"10.1109/CEC.2015.7257270","DOIUrl":null,"url":null,"abstract":"To address computational complexity of winner determination in combinatorial auction, a new co-evolutionary algorithms is developed based on combining mixed mutation with self-organization optimization for finding high quality solutions quickly. Mixed mutation strategy can select adaptively mutation operators which are suitable for discrete space to maintain population diversity, self-organization optimization makes the search to jump out of local optima. This paper investigates two combination methods of mixed mutation and self-organization optimization, the results of experiment show the better performance of the second way (MMSEO2) that self-organization optimization is added to mixed mutation strategy set as a pure mutation operator. We compare the proposed algorithm with current well-known approximate algorithms for winner determination problem, and demonstrate that the proposed algorithm MMSEO2 produces competitive results and finds better solutions than other algorithms for large problem sizes.","PeriodicalId":403666,"journal":{"name":"2015 IEEE Congress on Evolutionary Computation (CEC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2015.7257270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To address computational complexity of winner determination in combinatorial auction, a new co-evolutionary algorithms is developed based on combining mixed mutation with self-organization optimization for finding high quality solutions quickly. Mixed mutation strategy can select adaptively mutation operators which are suitable for discrete space to maintain population diversity, self-organization optimization makes the search to jump out of local optima. This paper investigates two combination methods of mixed mutation and self-organization optimization, the results of experiment show the better performance of the second way (MMSEO2) that self-organization optimization is added to mixed mutation strategy set as a pure mutation operator. We compare the proposed algorithm with current well-known approximate algorithms for winner determination problem, and demonstrate that the proposed algorithm MMSEO2 produces competitive results and finds better solutions than other algorithms for large problem sizes.