Scalable and Secure Logistic Regression via Homomorphic Encryption

Yoshinori Aono, Takuya Hayashi, L. T. Phong, Lihua Wang
{"title":"Scalable and Secure Logistic Regression via Homomorphic Encryption","authors":"Yoshinori Aono, Takuya Hayashi, L. T. Phong, Lihua Wang","doi":"10.1145/2857705.2857731","DOIUrl":null,"url":null,"abstract":"Logistic regression is a powerful machine learning tool to classify data. When dealing with sensitive data such as private or medical information, cares are necessary. In this paper, we propose a secure system for protecting the training data in logistic regression via homomorphic encryption. Perhaps surprisingly, despite the non-polynomial tasks of training in logistic regression, we show that only additively homomorphic encryption is needed to build our system. Our system is secure and scalable with the dataset size.","PeriodicalId":377412,"journal":{"name":"Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"161","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2857705.2857731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 161

Abstract

Logistic regression is a powerful machine learning tool to classify data. When dealing with sensitive data such as private or medical information, cares are necessary. In this paper, we propose a secure system for protecting the training data in logistic regression via homomorphic encryption. Perhaps surprisingly, despite the non-polynomial tasks of training in logistic regression, we show that only additively homomorphic encryption is needed to build our system. Our system is secure and scalable with the dataset size.
基于同态加密的可扩展和安全逻辑回归
逻辑回归是一种功能强大的机器学习数据分类工具。在处理敏感数据(如私人或医疗信息)时,需要注意。本文提出了一种基于同态加密的逻辑回归训练数据安全保护系统。也许令人惊讶的是,尽管在逻辑回归中训练的任务是非多项式的,但我们表明只需要加性同态加密来构建我们的系统。我们的系统是安全和可扩展的数据集大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信