Improved variable forgetting factor recursive least square algorithm

F. Albu
{"title":"Improved variable forgetting factor recursive least square algorithm","authors":"F. Albu","doi":"10.1109/ICARCV.2012.6485421","DOIUrl":null,"url":null,"abstract":"In this paper an improved variable forgetting factor recursive least square (IVFF-RLS) algorithm is proposed. The forgetting factor is adjusted according to the square of a time-averaging estimate of the autocorrelation of a priori and a posteriori errors. The proposed algorithm has fast convergence, and robustness against variable background noise, near-end signal variations and echo path change. The simulation results indicate the superior performances of IVFF-RLS when compared to the RLS and VFF-RLS algorithms.","PeriodicalId":441236,"journal":{"name":"2012 12th International Conference on Control Automation Robotics & Vision (ICARCV)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 12th International Conference on Control Automation Robotics & Vision (ICARCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2012.6485421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

In this paper an improved variable forgetting factor recursive least square (IVFF-RLS) algorithm is proposed. The forgetting factor is adjusted according to the square of a time-averaging estimate of the autocorrelation of a priori and a posteriori errors. The proposed algorithm has fast convergence, and robustness against variable background noise, near-end signal variations and echo path change. The simulation results indicate the superior performances of IVFF-RLS when compared to the RLS and VFF-RLS algorithms.
改进的变量遗忘因子递归最小二乘算法
本文提出了一种改进的变遗忘因子递归最小二乘(IVFF-RLS)算法。遗忘因子是根据先验误差和后验误差的自相关性的时间平均估计的平方来调整的。该算法收敛速度快,对背景噪声、近端信号变化和回波路径变化具有较强的鲁棒性。仿真结果表明,与RLS和VFF-RLS算法相比,IVFF-RLS算法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信