LMP

Wei Huang, Zhen Huang, Dhaval Miyani, D. Lie
{"title":"LMP","authors":"Wei Huang, Zhen Huang, Dhaval Miyani, D. Lie","doi":"10.1145/2991079.2991089","DOIUrl":null,"url":null,"abstract":"Despite a long history and numerous proposed defenses, memory corruption attacks are still viable. A secure and low-overhead defense against return-oriented programming (ROP) continues to elude the security community. Currently proposed solutions still must choose between either not fully protecting critical data and relying instead on information hiding, or using incomplete, coarse-grain checking that can be circumvented by a suitably skilled attacker. In this paper, we present a light-weighted memory protection approach (LMP) that uses Intel's MPX hardware extensions to provide complete, fast ROP protection without having to rely in information hiding. We demonstrate a prototype that defeats ROP attacks while incurring an average runtime overhead of 3.9%.","PeriodicalId":419419,"journal":{"name":"Proceedings of the 32nd Annual Conference on Computer Security Applications","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 32nd Annual Conference on Computer Security Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2991079.2991089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Despite a long history and numerous proposed defenses, memory corruption attacks are still viable. A secure and low-overhead defense against return-oriented programming (ROP) continues to elude the security community. Currently proposed solutions still must choose between either not fully protecting critical data and relying instead on information hiding, or using incomplete, coarse-grain checking that can be circumvented by a suitably skilled attacker. In this paper, we present a light-weighted memory protection approach (LMP) that uses Intel's MPX hardware extensions to provide complete, fast ROP protection without having to rely in information hiding. We demonstrate a prototype that defeats ROP attacks while incurring an average runtime overhead of 3.9%.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信