Patching Catmull-Clark meshes

J. Peters
{"title":"Patching Catmull-Clark meshes","authors":"J. Peters","doi":"10.1145/344779.344908","DOIUrl":null,"url":null,"abstract":"Named after the title, the PCCM transformation is a simple, explicit algorithm that creates large, smoothly joining bicubic Nurbs patches from a refined Catmull-Clark subdivision mesh. The resulting patches are maximally large in the sense that one patch corresponds to one quadrilateral facet of the initial, coarsest quadrilateral mesh before subdivision. The patches join parametrically C2 and agree with the Catmull-Clark limit surface except in the immediate neighborhood of extraordinary mesh nodes; in such a neighborhood they join at least with tangent continuity and interpolate the limit of the extraordinary mesh node. The PCCM transformation integrates naturally with array-based implementations of subdivision surfaces.","PeriodicalId":269415,"journal":{"name":"Proceedings of the 27th annual conference on Computer graphics and interactive techniques","volume":"12 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"103","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th annual conference on Computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/344779.344908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 103

Abstract

Named after the title, the PCCM transformation is a simple, explicit algorithm that creates large, smoothly joining bicubic Nurbs patches from a refined Catmull-Clark subdivision mesh. The resulting patches are maximally large in the sense that one patch corresponds to one quadrilateral facet of the initial, coarsest quadrilateral mesh before subdivision. The patches join parametrically C2 and agree with the Catmull-Clark limit surface except in the immediate neighborhood of extraordinary mesh nodes; in such a neighborhood they join at least with tangent continuity and interpolate the limit of the extraordinary mesh node. The PCCM transformation integrates naturally with array-based implementations of subdivision surfaces.
补Catmull-Clark网格
PCCM变换以标题命名,是一种简单、明确的算法,可以从精细的Catmull-Clark细分网格中创建大型、平滑连接的双三次Nurbs补丁。所得到的补丁是最大的,因为在细分之前,一个补丁对应于初始的、最粗糙的四边形网格的一个四边形面。除异常网格节点的邻近区域外,这些斑块参数化地连接到C2,符合Catmull-Clark极限曲面;在这样的邻域内,它们至少以切线连续性连接,并插值异常网格节点的极限。PCCM转换与基于数组的细分曲面实现自然集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信