Multi-Resolution and Multi-Domain Analysis of Off-Road Datasets for Autonomous Driving

Orighomisan Mayuku, B. Surgenor, J. Marshall
{"title":"Multi-Resolution and Multi-Domain Analysis of Off-Road Datasets for Autonomous Driving","authors":"Orighomisan Mayuku, B. Surgenor, J. Marshall","doi":"10.1109/CRV52889.2021.00030","DOIUrl":null,"url":null,"abstract":"For use in off-road autonomous driving applications, we propose and study the use of multi-resolution local binary pattern texture descriptors to improve overall semantic segmentation performance and reduce class imbalance effects in off-road visual datasets. Our experiments, using a challenging publicly available off-road dataset as well as our own off-road dataset, show that texture features provide added flexibility towards reducing class imbalance effects, and that fusing color and texture features can improve segmentation performance. Finally, we demonstrate domain adaptation limitations in nominally similar off-road environments by cross-comparing the segmentation performance of convolutional neural networks trained on both datasets.","PeriodicalId":413697,"journal":{"name":"2021 18th Conference on Robots and Vision (CRV)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 18th Conference on Robots and Vision (CRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV52889.2021.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

For use in off-road autonomous driving applications, we propose and study the use of multi-resolution local binary pattern texture descriptors to improve overall semantic segmentation performance and reduce class imbalance effects in off-road visual datasets. Our experiments, using a challenging publicly available off-road dataset as well as our own off-road dataset, show that texture features provide added flexibility towards reducing class imbalance effects, and that fusing color and texture features can improve segmentation performance. Finally, we demonstrate domain adaptation limitations in nominally similar off-road environments by cross-comparing the segmentation performance of convolutional neural networks trained on both datasets.
自动驾驶非道路数据集的多分辨率多域分析
为了在越野自动驾驶应用中使用,我们提出并研究了多分辨率局部二元模式纹理描述符的使用,以提高越野视觉数据集的整体语义分割性能并减少类不平衡效应。我们的实验,使用具有挑战性的公开可用的越野数据集以及我们自己的越野数据集,表明纹理特征为减少类别不平衡效应提供了额外的灵活性,并且融合颜色和纹理特征可以提高分割性能。最后,我们通过交叉比较在两个数据集上训练的卷积神经网络的分割性能,证明了在名义上相似的越野环境中的域自适应局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信