SVM-based Fingerprint Classification Using Orientation Field

Luping Ji, Zhang Yi
{"title":"SVM-based Fingerprint Classification Using Orientation Field","authors":"Luping Ji, Zhang Yi","doi":"10.1109/ICNC.2007.700","DOIUrl":null,"url":null,"abstract":"This paper presents a classification method of fingerprint using orientation field and support vector machines. It estimates orientation field through pixel gradient, then calculates the percentages of the directional block classes. These percentages are combined as a four dimensional vector, by which the trained hierarchical classifier classifies the fingerprint into one of the six classes it belongs to. Experiments show that this method has high classification accuracy as well as low computational time cost.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

This paper presents a classification method of fingerprint using orientation field and support vector machines. It estimates orientation field through pixel gradient, then calculates the percentages of the directional block classes. These percentages are combined as a four dimensional vector, by which the trained hierarchical classifier classifies the fingerprint into one of the six classes it belongs to. Experiments show that this method has high classification accuracy as well as low computational time cost.
基于方向场的svm指纹分类
提出了一种基于方向场和支持向量机的指纹分类方法。它通过像素梯度估计方向场,然后计算方向块类的百分比。这些百分比被组合成一个四维向量,通过这个向量,训练好的层次分类器将指纹分类到它所属的六个类中的一个。实验表明,该方法具有较高的分类精度和较低的计算时间开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信