Yongdu Wang, Zhenbin Zhang, Weiqing Huang, R. Kennel, W. Xie, Fengxiang Wang
{"title":"Encoderless Sequential Predictive Torque Control with SMO of 3L-NPC Converter-fed Induction Motor Drives for Electrical Car Applications","authors":"Yongdu Wang, Zhenbin Zhang, Weiqing Huang, R. Kennel, W. Xie, Fengxiang Wang","doi":"10.1109/PRECEDE.2019.8753238","DOIUrl":null,"url":null,"abstract":"Finite control set predictive torque control (FCSPTC) is well-known for its fast response and good flexibility. However, drawbacks such as speed dependence and tedious tuning efforts for weighting factors lead to system failure and implementation complexity. This work proposes a revised FCSPTC method for 3L-NPC converter-fed induction motor (IM) using a sliding mode observer (SMO) to estimate the speed errors caused by the rotor shaft encoder. The novelty lies in two aspects: I. The revised SMO frees the controller from the speed signal dependence, eliminating potential accumulated errors from the speed feedback channels. II. The cost function is realized with a sequential structure, avoiding tedious tuning efforts for weighting factors design. Theoretical analysis and simulation results reveal that: the proposed control scheme performs well without weighting factors and achieves encoderless torque control at both transient and steady-state operation phases.","PeriodicalId":227885,"journal":{"name":"2019 IEEE International Symposium on Predictive Control of Electrical Drives and Power Electronics (PRECEDE)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Predictive Control of Electrical Drives and Power Electronics (PRECEDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRECEDE.2019.8753238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Finite control set predictive torque control (FCSPTC) is well-known for its fast response and good flexibility. However, drawbacks such as speed dependence and tedious tuning efforts for weighting factors lead to system failure and implementation complexity. This work proposes a revised FCSPTC method for 3L-NPC converter-fed induction motor (IM) using a sliding mode observer (SMO) to estimate the speed errors caused by the rotor shaft encoder. The novelty lies in two aspects: I. The revised SMO frees the controller from the speed signal dependence, eliminating potential accumulated errors from the speed feedback channels. II. The cost function is realized with a sequential structure, avoiding tedious tuning efforts for weighting factors design. Theoretical analysis and simulation results reveal that: the proposed control scheme performs well without weighting factors and achieves encoderless torque control at both transient and steady-state operation phases.