Jonathon T. Giffin, Mihai Christodorescu, L. Kruger
{"title":"Strengthening software self-checksumming via self-modifying code","authors":"Jonathon T. Giffin, Mihai Christodorescu, L. Kruger","doi":"10.1109/CSAC.2005.53","DOIUrl":null,"url":null,"abstract":"Recent research has proposed self-checksumming as a method by which a program can detect any possibly malicious modification to its code. Wurster et al. developed an attack against such programs that renders code modifications undetectable to any self-checksumming routine. The attack replicated pages of program text and altered values in hardware data structures so that data reads and instruction fetches retrieved values from different memory pages. A cornerstone of their attack was its applicability to a variety of commodity hardware: they could alter memory accesses using only a malicious operating system. In this paper, we show that their page-replication attack can be detected by self-checksumming programs with self-modifying code. Our detection is efficient, adding less than 1 microsecond to each checksum computation in our experiments on three processor families, and is robust up to attacks using either costly interpretive emulation or specialized hardware","PeriodicalId":422994,"journal":{"name":"21st Annual Computer Security Applications Conference (ACSAC'05)","volume":"7 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"86","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st Annual Computer Security Applications Conference (ACSAC'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSAC.2005.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 86
Abstract
Recent research has proposed self-checksumming as a method by which a program can detect any possibly malicious modification to its code. Wurster et al. developed an attack against such programs that renders code modifications undetectable to any self-checksumming routine. The attack replicated pages of program text and altered values in hardware data structures so that data reads and instruction fetches retrieved values from different memory pages. A cornerstone of their attack was its applicability to a variety of commodity hardware: they could alter memory accesses using only a malicious operating system. In this paper, we show that their page-replication attack can be detected by self-checksumming programs with self-modifying code. Our detection is efficient, adding less than 1 microsecond to each checksum computation in our experiments on three processor families, and is robust up to attacks using either costly interpretive emulation or specialized hardware