A sparseland model for deblurring images in the presence of impulse noise

Haili Zhang, Yunmei Chen
{"title":"A sparseland model for deblurring images in the presence of impulse noise","authors":"Haili Zhang, Yunmei Chen","doi":"10.1109/ICIP.2012.6467550","DOIUrl":null,"url":null,"abstract":"Joint image deblurring and denoising has long been an interesting problem. Traditional deconvolution methods (like the ROF model) only work for Gaussian noise. Median-based approaches are generally concerned with the removal of impulse noise, which are more likely to hamper the deblurring process. In this paper, we propose a spareland model for deblurring images corrupted by impulse noise. The key point is to approximate the probability density function by two different randomly mixed Gaussian distributions. Experimental results are provided at the end of this paper to demonstrate the effectiveness of the proposed method.","PeriodicalId":147245,"journal":{"name":"International Conference on Information Photonics","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Information Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2012.6467550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Joint image deblurring and denoising has long been an interesting problem. Traditional deconvolution methods (like the ROF model) only work for Gaussian noise. Median-based approaches are generally concerned with the removal of impulse noise, which are more likely to hamper the deblurring process. In this paper, we propose a spareland model for deblurring images corrupted by impulse noise. The key point is to approximate the probability density function by two different randomly mixed Gaussian distributions. Experimental results are provided at the end of this paper to demonstrate the effectiveness of the proposed method.
一种用于在脉冲噪声存在下去模糊图像的稀疏域模型
联合图像去模糊和去噪一直是一个有趣的问题。传统的反卷积方法(如ROF模型)只适用于高斯噪声。基于中位数的方法通常关注脉冲噪声的去除,而脉冲噪声更有可能阻碍去模糊过程。在本文中,我们提出了一种用于去除被脉冲噪声破坏的图像模糊的备用区域模型。关键是用两个不同的随机混合高斯分布近似概率密度函数。最后给出了实验结果,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信