{"title":"A fuzzy clustering algorithm to detect criminals without prior information","authors":"Changjun Fan, Kaiming Xiao, Bao-Xin Xiu, Guodong Lv","doi":"10.1109/ASONAM.2014.6921590","DOIUrl":null,"url":null,"abstract":"Crime analysis has been widely studied, but problem of identifying conspirators through communication network analysis is still not well resolved. In this paper, we proposed a fuzzy clustering algorithm to detect hidden criminals from topic network, which took no use of individuals' prior identity information. We first built up a local suspicion calculation from nodes' neighboring information (node and edge); and then with global information, we employed the fuzzy k-means clustering algorithm, and made the membership to suspicious group as the global suspicion degree. Experiments showed it works well on identification: known suspects gained relative high values and known innocents got relative low values.","PeriodicalId":143584,"journal":{"name":"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASONAM.2014.6921590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Crime analysis has been widely studied, but problem of identifying conspirators through communication network analysis is still not well resolved. In this paper, we proposed a fuzzy clustering algorithm to detect hidden criminals from topic network, which took no use of individuals' prior identity information. We first built up a local suspicion calculation from nodes' neighboring information (node and edge); and then with global information, we employed the fuzzy k-means clustering algorithm, and made the membership to suspicious group as the global suspicion degree. Experiments showed it works well on identification: known suspects gained relative high values and known innocents got relative low values.