Seen to Unseen: Exploring Compositional Generalization of Multi-Attribute Controllable Dialogue Generation

Weihao Zeng, Lulu Zhao, Keqing He, Ruotong Geng, Jingang Wang, Wei Wu, Weiran Xu
{"title":"Seen to Unseen: Exploring Compositional Generalization of Multi-Attribute Controllable Dialogue Generation","authors":"Weihao Zeng, Lulu Zhao, Keqing He, Ruotong Geng, Jingang Wang, Wei Wu, Weiran Xu","doi":"10.48550/arXiv.2306.10317","DOIUrl":null,"url":null,"abstract":"Existing controllable dialogue generation work focuses on the single-attribute control and lacks generalization capability to out-of-distribution multiple attribute combinations. In this paper, we explore the compositional generalization for multi-attribute controllable dialogue generation where a model can learn from seen attribute values and generalize to unseen combinations. We propose a prompt-based disentangled controllable dialogue generation model, DCG. It learns attribute concept composition by generating attribute-oriented prompt vectors and uses a disentanglement loss to disentangle different attributes for better generalization. Besides, we design a unified reference-free evaluation framework for multiple attributes with different levels of granularities. Experiment results on two benchmarks prove the effectiveness of our method and the evaluation metric.","PeriodicalId":352845,"journal":{"name":"Annual Meeting of the Association for Computational Linguistics","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Meeting of the Association for Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2306.10317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Existing controllable dialogue generation work focuses on the single-attribute control and lacks generalization capability to out-of-distribution multiple attribute combinations. In this paper, we explore the compositional generalization for multi-attribute controllable dialogue generation where a model can learn from seen attribute values and generalize to unseen combinations. We propose a prompt-based disentangled controllable dialogue generation model, DCG. It learns attribute concept composition by generating attribute-oriented prompt vectors and uses a disentanglement loss to disentangle different attributes for better generalization. Besides, we design a unified reference-free evaluation framework for multiple attributes with different levels of granularities. Experiment results on two benchmarks prove the effectiveness of our method and the evaluation metric.
从看见到看不见:探索多属性可控对话生成的组合泛化
现有的可控对话生成工作主要集中在单属性控制上,缺乏对非分布多属性组合的泛化能力。在本文中,我们探索了多属性可控对话生成的组合泛化,其中模型可以从可见的属性值中学习并泛化到不可见的组合。提出了一种基于提示符的解纠缠可控对话生成模型DCG。它通过生成面向属性的提示向量来学习属性概念的组成,并使用解纠缠损失来解纠缠不同的属性,从而更好地进行泛化。此外,针对不同粒度的多属性,设计了统一的无参考评价框架。在两个基准上的实验结果证明了我们的方法和评价指标的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信