{"title":"A Probabilistic View of Neighborhood-Based Recommendation Methods","authors":"Jun Wang, Qiang Tang","doi":"10.1109/ICDMW.2016.0011","DOIUrl":null,"url":null,"abstract":"Probabilistic graphic model is an elegant framework to compactly present complex real-world observations by modeling uncertainty and logical flow (conditionally independent factors). In this paper, we present a probabilistic framework of neighborhood-based recommendation methods (PNBM) in which similarity is regarded as an unobserved factor. Thus, PNBM leads the estimation of user preference to maximizing a posterior over similarity. We further introduce a novel multi-layer similarity descriptor which models and learns the joint influence of various features under PNBM, and name the new framework MPNBM. Empirical results on real-world datasets show that MPNBM allows very accurate estimation of user preferences.","PeriodicalId":373866,"journal":{"name":"2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2016.0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Probabilistic graphic model is an elegant framework to compactly present complex real-world observations by modeling uncertainty and logical flow (conditionally independent factors). In this paper, we present a probabilistic framework of neighborhood-based recommendation methods (PNBM) in which similarity is regarded as an unobserved factor. Thus, PNBM leads the estimation of user preference to maximizing a posterior over similarity. We further introduce a novel multi-layer similarity descriptor which models and learns the joint influence of various features under PNBM, and name the new framework MPNBM. Empirical results on real-world datasets show that MPNBM allows very accurate estimation of user preferences.