Predicting heart failure prognosis using deep learning based on FT-transformer

Geun-Hyeong Kim, Minuk Yang, Geun-Hyeong Kim, Seong-Hwan Eom, Tae-Soo Lee, Seung Park
{"title":"Predicting heart failure prognosis using deep learning based on FT-transformer","authors":"Geun-Hyeong Kim, Minuk Yang, Geun-Hyeong Kim, Seong-Hwan Eom, Tae-Soo Lee, Seung Park","doi":"10.1109/ICUFN57995.2023.10200998","DOIUrl":null,"url":null,"abstract":"Although heart failure (HF) diagnosis and treatment techniques have advanced, more than 50% of HF patients are readmitted. Readmission worsens the life quality of patients due to economic and psychological burdens. Therefore, readmission prediction for patients is important to prevent unnecessary readmissions. We used a feature tokenizer transformer (FT-transformer) to predict readmission by embedding all features and analyzing via transformer encoder. Our experiment with 615 HF patients outperformed conventional machine learning models, achieving an area under the curve of 0.7434 within 28 days, 0.7063 within 3 months, and 0.7039 within 6 months. FT-transformer can potentially improve patient outcomes by enabling early interventions to prevent readmissions.","PeriodicalId":341881,"journal":{"name":"2023 Fourteenth International Conference on Ubiquitous and Future Networks (ICUFN)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Fourteenth International Conference on Ubiquitous and Future Networks (ICUFN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUFN57995.2023.10200998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Although heart failure (HF) diagnosis and treatment techniques have advanced, more than 50% of HF patients are readmitted. Readmission worsens the life quality of patients due to economic and psychological burdens. Therefore, readmission prediction for patients is important to prevent unnecessary readmissions. We used a feature tokenizer transformer (FT-transformer) to predict readmission by embedding all features and analyzing via transformer encoder. Our experiment with 615 HF patients outperformed conventional machine learning models, achieving an area under the curve of 0.7434 within 28 days, 0.7063 within 3 months, and 0.7039 within 6 months. FT-transformer can potentially improve patient outcomes by enabling early interventions to prevent readmissions.
基于FT-transformer的深度学习预测心力衰竭预后
尽管心衰的诊断和治疗技术已经取得了进步,但仍有超过50%的心衰患者再次入院。由于经济和心理负担,再入院使患者的生活质量恶化。因此,对患者进行再入院预测对于防止不必要的再入院具有重要意义。我们使用特征标记器变压器(ft -变压器)通过嵌入所有特征并通过变压器编码器进行分析来预测再入。我们对615例HF患者的实验优于传统的机器学习模型,28天曲线下面积为0.7434,3个月曲线下面积为0.7063,6个月曲线下面积为0.7039。FT-transformer可以通过早期干预预防再入院,从而潜在地改善患者的预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信