Possibilistic Network based Information Retrieval Model

Kamel Garrouch, Mohamed Nazih Omri
{"title":"Possibilistic Network based Information Retrieval Model","authors":"Kamel Garrouch, Mohamed Nazih Omri","doi":"10.1109/ISDA.2015.7489255","DOIUrl":null,"url":null,"abstract":"This paper proposes a new Information Retrieval Model based on Possibilistic Networks. The model structure integrates most relevant term to term dependence relationships. The approach used to extract the set of these dependencies focuses on local dependencies between terms within each document. The relevance of a document to a query is interpreted by two degrees: the necessity and the possibility. The necessity degree evaluates the extent to which a document is relevant to a query, whereas the possibility degree evaluates the reasons of eliminating irrelevant documents. These two measures are also used for quantifying terms-terms links and terms-documents links. Experiments carried out on three standard document collections show the effectiveness of the model.","PeriodicalId":196743,"journal":{"name":"2015 15th International Conference on Intelligent Systems Design and Applications (ISDA)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 15th International Conference on Intelligent Systems Design and Applications (ISDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2015.7489255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper proposes a new Information Retrieval Model based on Possibilistic Networks. The model structure integrates most relevant term to term dependence relationships. The approach used to extract the set of these dependencies focuses on local dependencies between terms within each document. The relevance of a document to a query is interpreted by two degrees: the necessity and the possibility. The necessity degree evaluates the extent to which a document is relevant to a query, whereas the possibility degree evaluates the reasons of eliminating irrelevant documents. These two measures are also used for quantifying terms-terms links and terms-documents links. Experiments carried out on three standard document collections show the effectiveness of the model.
基于可能性网络的信息检索模型
提出了一种基于可能性网络的信息检索模型。模型结构集成了最相关的术语对术语的依赖关系。用于提取这些依赖项集的方法侧重于每个文档中术语之间的本地依赖项。文档与查询的相关性由两个程度来解释:必要性和可能性。必要性程度评估文档与查询相关的程度,而可能性程度评估消除不相关文档的原因。这两个度量也用于量化术语-术语链接和术语-文档链接。在三个标准文档集合上进行的实验表明了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信