Ahmet Furkan Bayram, Caglar Gurkan, Abdulkadir Budak, Hakan Karatas
{"title":"Fully Automatic End-to-End Convolutional Neural Networks-Based Pancreatic Tumor Segmentation on CT Modality","authors":"Ahmet Furkan Bayram, Caglar Gurkan, Abdulkadir Budak, Hakan Karatas","doi":"10.34110/forecasting.1190299","DOIUrl":null,"url":null,"abstract":"The pancreas is one of the vital organs in the human body. Early diagnosis of a disease in the pancreas is critical. In this way, the effects of pancreas diseases, especially pancreatic cancer on the person are decreased. With this purpose, artificial intelligence-assisted pancreatic cancer segmentation was performed for early diagnosis in this paper. For this aim, several state-of-the-art segmentation networks, UNet, LinkNet, SegNet, SQ-Net, DABNet, EDANet, and ESNet were used in this study. In the comparative analysis, the best segmentation performance has been achieved by SQ-Net. SQ-Net has achieved a 0.917 dice score, 0.847 IoU score, 0.920 sensitivity, 1.000 specificity, 0.914 precision, and 0.999 accuracy. Considering these results, an artificial intelligence-based decision support system was created in the study.","PeriodicalId":141932,"journal":{"name":"Turkish Journal of Forecasting","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Forecasting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34110/forecasting.1190299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The pancreas is one of the vital organs in the human body. Early diagnosis of a disease in the pancreas is critical. In this way, the effects of pancreas diseases, especially pancreatic cancer on the person are decreased. With this purpose, artificial intelligence-assisted pancreatic cancer segmentation was performed for early diagnosis in this paper. For this aim, several state-of-the-art segmentation networks, UNet, LinkNet, SegNet, SQ-Net, DABNet, EDANet, and ESNet were used in this study. In the comparative analysis, the best segmentation performance has been achieved by SQ-Net. SQ-Net has achieved a 0.917 dice score, 0.847 IoU score, 0.920 sensitivity, 1.000 specificity, 0.914 precision, and 0.999 accuracy. Considering these results, an artificial intelligence-based decision support system was created in the study.