{"title":"Learning Procedures from Text: Codifying How-to Procedures in Deep Neural Networks","authors":"Hogun Park, H. M. Nezhad","doi":"10.1145/3184558.3186347","DOIUrl":null,"url":null,"abstract":"A lot of knowledge about procedures and how-tos are described in text. Recently, extracting semantic relations from the procedural text has been actively explored. Prior work mostly has focused on finding relationships among verb-noun pairs or clustering of extracted pairs. In this paper, we investigate the problem of learning individual procedure-specific relationships (e.g. is method of, is alternative of, or is subtask of) among sentences. To identify the relationships, we propose an end-to-end neural network architecture, which can selectively learn important procedure-specific relationships. Using this approach, we could construct a how-to knowledge base from the largest procedure sharing-community, wiki-how.com. The evaluation of our approach shows that it outperforms the existing entity relationship extraction algorithms.","PeriodicalId":235572,"journal":{"name":"Companion Proceedings of the The Web Conference 2018","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the The Web Conference 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3184558.3186347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
A lot of knowledge about procedures and how-tos are described in text. Recently, extracting semantic relations from the procedural text has been actively explored. Prior work mostly has focused on finding relationships among verb-noun pairs or clustering of extracted pairs. In this paper, we investigate the problem of learning individual procedure-specific relationships (e.g. is method of, is alternative of, or is subtask of) among sentences. To identify the relationships, we propose an end-to-end neural network architecture, which can selectively learn important procedure-specific relationships. Using this approach, we could construct a how-to knowledge base from the largest procedure sharing-community, wiki-how.com. The evaluation of our approach shows that it outperforms the existing entity relationship extraction algorithms.