Identification of Key Actor Nodes: A Centrality Measure Ranking Aggregation Approach

Andreas Kosmatopoulos, K. Loumponias, O. Theodosiadou, T. Tsikrika, S. Vrochidis, Y. Kompatsiaris
{"title":"Identification of Key Actor Nodes: A Centrality Measure Ranking Aggregation Approach","authors":"Andreas Kosmatopoulos, K. Loumponias, O. Theodosiadou, T. Tsikrika, S. Vrochidis, Y. Kompatsiaris","doi":"10.1109/ASONAM55673.2022.10068668","DOIUrl":null,"url":null,"abstract":"The identification of key actors in complex networks has gathered significant interest by virtue of their importance in modern applications. Several of the existing methods employ standard centrality measures to achieve their goal and as a result, one of the main challenges is identifying key actor nodes with high relevance across all such measures. In this work, we propose a model based on the use of graph convolutional networks (GeNs) that retrieves the key actors in a network based on a centrality measure ranking aggregation scheme. We experimentally demonstrate the effectiveness of our solution compared to baseline and state-of-the-art approaches in terms of: i) accuracy, ii) performance compared to standard machine learning approaches, and iii) influence propagation capabilities.","PeriodicalId":423113,"journal":{"name":"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASONAM55673.2022.10068668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The identification of key actors in complex networks has gathered significant interest by virtue of their importance in modern applications. Several of the existing methods employ standard centrality measures to achieve their goal and as a result, one of the main challenges is identifying key actor nodes with high relevance across all such measures. In this work, we propose a model based on the use of graph convolutional networks (GeNs) that retrieves the key actors in a network based on a centrality measure ranking aggregation scheme. We experimentally demonstrate the effectiveness of our solution compared to baseline and state-of-the-art approaches in terms of: i) accuracy, ii) performance compared to standard machine learning approaches, and iii) influence propagation capabilities.
关键参与者节点的识别:一种中心性度量排序聚合方法
复杂网络中关键行为体的识别由于其在现代应用中的重要性而引起了极大的兴趣。现有的几种方法采用标准的中心性度量来实现其目标,因此,主要挑战之一是确定在所有这些度量中具有高度相关性的关键参与者节点。在这项工作中,我们提出了一个基于使用图卷积网络(GeNs)的模型,该模型基于中心性度量排序聚合方案检索网络中的关键参与者。我们通过实验证明了与基线和最先进的方法相比,我们的解决方案在以下方面的有效性:i)准确性,ii)与标准机器学习方法相比的性能,以及iii)影响传播能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信