Speech vs music discrimination using Empirical Mode Decomposition

B. K. Khonglah, Rajib Sharma, S. Prasanna
{"title":"Speech vs music discrimination using Empirical Mode Decomposition","authors":"B. K. Khonglah, Rajib Sharma, S. Prasanna","doi":"10.1109/NCC.2015.7084865","DOIUrl":null,"url":null,"abstract":"This work explores the use of Empirical Mode Decomposition (EMD) for discriminating speech regions from music in audio recordings. The different frequency scales or Intrinsic Mode Functions (IMFs) obtained from EMD of the audio signal are found to contain discriminatory evidence for distinguishing the speech regions from the music regions of the audio signal. Different statistical measures like mean, absolute mean, variance, skewness and kurtosis are computed from the various IMFs and investigated for speech vs music discrimination. These features on being used for classification using classifiers like Support Vector Machines (SVMs) and k-Nearest Neighbour (k-NN) on the Scheirer and Slaney database gives the best overall classification accuracy of 90.83% for the SVMs and 85.33% for the k-NN.","PeriodicalId":302718,"journal":{"name":"2015 Twenty First National Conference on Communications (NCC)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Twenty First National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2015.7084865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This work explores the use of Empirical Mode Decomposition (EMD) for discriminating speech regions from music in audio recordings. The different frequency scales or Intrinsic Mode Functions (IMFs) obtained from EMD of the audio signal are found to contain discriminatory evidence for distinguishing the speech regions from the music regions of the audio signal. Different statistical measures like mean, absolute mean, variance, skewness and kurtosis are computed from the various IMFs and investigated for speech vs music discrimination. These features on being used for classification using classifiers like Support Vector Machines (SVMs) and k-Nearest Neighbour (k-NN) on the Scheirer and Slaney database gives the best overall classification accuracy of 90.83% for the SVMs and 85.33% for the k-NN.
基于经验模态分解的语音与音乐区分
这项工作探讨了使用经验模式分解(EMD)来区分录音中的语音区域和音乐。从音频信号的EMD中获得的不同频率尺度或内在模态函数(IMFs)包含区分音频信号的语音区域和音乐区域的区别证据。从各种imf中计算不同的统计度量,如平均值、绝对平均值、方差、偏度和峰度,并研究语音与音乐的区别。这些特征被用于在Scheirer和Slaney数据库上使用支持向量机(svm)和k-近邻(k-NN)等分类器进行分类,svm和k-NN的总体分类精度最高,分别为90.83%和85.33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信