RESONANCES IN HYPERBOLIC DYNAMICS

S. Nonnenmacher
{"title":"RESONANCES IN HYPERBOLIC DYNAMICS","authors":"S. Nonnenmacher","doi":"10.1142/9789813272880_0147","DOIUrl":null,"url":null,"abstract":"The study of wave propagation outside bounded obstacles uncovers the existence of resonances for the Laplace operator, which are complex-valued generalized eigen-values, relevant to estimate the long time asymptotics of the wave. In order to understand distribution of these resonances at high frequency, we employ semiclassical tools, which leads to considering the classical scattering problem, and in particular the set of trapped trajectories. We focus on \"chaotic\" situations, where this set is a hy-perbolic repeller, generally with a fractal geometry. In this context, we derive fractal Weyl upper bounds for the resonance counting; we also obtain dynamical criteria ensuring the presence of a resonance gap. We also address situations where the trapped set is a normally hyperbolic submanifold, a case which can help analyzing the long time properties of (classical) Anosov contact flows through semiclassical methods.","PeriodicalId":318252,"journal":{"name":"Proceedings of the International Congress of Mathematicians (ICM 2018)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Congress of Mathematicians (ICM 2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789813272880_0147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The study of wave propagation outside bounded obstacles uncovers the existence of resonances for the Laplace operator, which are complex-valued generalized eigen-values, relevant to estimate the long time asymptotics of the wave. In order to understand distribution of these resonances at high frequency, we employ semiclassical tools, which leads to considering the classical scattering problem, and in particular the set of trapped trajectories. We focus on "chaotic" situations, where this set is a hy-perbolic repeller, generally with a fractal geometry. In this context, we derive fractal Weyl upper bounds for the resonance counting; we also obtain dynamical criteria ensuring the presence of a resonance gap. We also address situations where the trapped set is a normally hyperbolic submanifold, a case which can help analyzing the long time properties of (classical) Anosov contact flows through semiclassical methods.
双曲动力学中的共振
波在有界障碍物外传播的研究揭示了拉普拉斯算子共振的存在性,这些共振是复值广义特征值,与估计波的长时间渐近性有关。为了了解这些共振在高频下的分布,我们采用了半经典工具,这导致考虑经典散射问题,特别是一组捕获轨迹。我们关注的是“混沌”情况,在这种情况下,这个集合是一个双曲排斥体,通常具有分形几何。在这种情况下,我们导出了共振计数的分形Weyl上界;我们还得到了保证共振间隙存在的动力学判据。我们还讨论了捕获集通常是双曲子流形的情况,这种情况可以通过半经典方法帮助分析(经典)Anosov接触流的长时间性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信